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Abstract

Motivated by the current limitations of the existing al-
gorithms for robustness analysis, in this paper we take a
different direction which follows the so-called probabilistic
approach. That is, we aim to estimate the probability that
a control system with uncertain parameters g restricted to
a box @ attains a certain level of performance 4. Since
this probability depends on the underlying density func-
tion f(g), we study the following question: What is a “rea-
sonable” density function so that the estimated probabil-
ity makes sense? To answer this question, we define two
new worst-case criteria and prove that the uniform density
function is optimal in both cases. In the second part of
the paper, we turn our attention to a subsequent problem.
That is, taking f(q) as the uniform density function, we
estimate the size of the so-called “good” and “bad” sets.
Roughly speaking, the good set contains the parameters
¢ € Q that have performance level better than or equal to
v while the bad set is the set of parameters ¢ € @ that
have performance level worse than v. To estimate the size
of both sets, sampling is required. Then, we give bounds
on the minimum sample size to attain a given accuracy
and confidence.

1. Introduction and Preliminaries

Consider a (Lebesgue) measurable function u(q) :
R" — R, where ¢ = [g1,92,...,9,)" and each g; is re-
stricted to a bounded interval.
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Without loss of generality, we normalize each g; into
the interval [-1/2, 1/2] and define Q = [-1/2, 1/2]" C
R™. In addition, for any measurable subset Q@ C @, we
define the volume of @, denoted by vol(Q), as

vol(Q) = /Q dg.

By this notion, u(-) : Q C R® — R and vol(Q) = 1. The
following two problems are of most interest in robustness
analysis:

Problem 1: To find gpnax € Q such that

=m
u(qmax) lané( U(Q)

or, for given error bound € > 0, to find § € @ such that
|4(gmax) — u(@)| < €.

Problem 2: For given performance level ¥ > 0, to check
whether

u(g) <v

for all ¢ € Q.

Note that by proper formulation, if the vector ¢ rep-
resents the uncertain parameters entering into a control
system, many robustness analysis questions belong to one
of the above two problems. For instance, if u(q) is set
to be equal to the maximum real part of the roots of the
closed loop polynomial, then u(gmax) determines whether
the system is robustly stable. If u(g) is set to be equal
to the Ho, norm of the sensitivity function and if u(q) is
smaller than v for all ¢ € Q, then robust performance is
attained. Several robustness problems which can be for-
mulated in either one of the two cases described above are



listed in Section 4. Additional problems of this kind are
also studied in the work [8] in the classical M — A setting.

Given these motivations, we now introduce the notion
of good set and bad set. For given v > 0, define the good
set Qg(y) € Q and the bad set Q4(v) C Q as

Q(y) = {9€Q:u(g)>7h
Q7)) = {q€Q:u(g) <}

Roughly speaking, the good set Q,(v) contains the pa-
rameters ¢ € @ that have performance level better than
or equal to v and the bad set Qu(v) is the set of param-
eters ¢ € @ that have performance level worse than 7.
Obviuosly, the union of these two sets coincides with Q.
The problems described above are in general very com-
"plex as far as computations are concerned. In particular,
it has been shown recently (see e.g., [4], [10] and [12])
that several key problems in robustness, including p cal-
culation and stability of interval matrices, are NP-hard.
Motivated by this gloomy picture, a number of researchers
have recently taken a different direction which leads to a
probabilistic-based approach; e.g., see the earlier works
[13} and [14] and the subsequent papers [2], [8] and [15].
The key idea in this framework is to solve both Problems
1 and 2 in terms of probability. That is, instead of a guar-
anteed answer as in the classical setting, we now look for
a probabilistic answer. For instance, we can say that the
probability that u(g) < v is at least 1—§, where § € (0, 1).
Similarly, for € € (0, 1), given § € @, we estimate

lu(gmax) —u(@) <€

with probability 1 — 6. Following the terminology in [16],
we call € the accuracy and 1 — é the confidence parame-
ter. One interesting feature of this probabilistic setting is
that, unlike its deterministic counterpart, the complexity
of randomized algorithms may not increase exponentially
with the number of uncertain parameters entering into the
control system; see Lemma 3.1, the discussion in Section 5
and the references [8], [13] and [15]. A drawback of this
setting, however, is that the results obtained depend on
the specific choice of the density function f and the results
can be totally different for different density functions. De-

fine p(f) as
= [ flada
Qo)

which is the probability of the “size” of the bad set Q(7)
when the density function is taken to be f. Then, for given
u(-) and performance level v, we may ask the following
question: How do we calculate p(f)? This probability can
be easily estimated by using some classical results such as
the Bernoulli [11] or Chernoff bounds [5]. In particular,
let ¢%, ¢2,...,¢" beiid. random samples in Q generated
according to the given density function f. Define

2 :{ 1 if ¢' € Qu(7);

0 otherwise.
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Then, invoking the Chernoff bound [5], we conclude that
if

1 2
N2oahs
then,
1 N
Prob{|- ; ~p(f) <e}>1-6

for any € € (0,1) and 6§ € (0,1). The interpretation of
this result is the following: If € and é are “small,” the
estimated probability p(f) = ‘11s7' Zf\r___l 2z; is an accurate es-
timate of the true probability p(f). We also observe that
the number of samples required to compute this estimate
is linear in both % and In }. However, without some rea-
soning attached to the chosen density function f, this p(f)
is meaningless. To argue this, consider two extreme cases.
First, let f be chosen such that f(q) = 0if ¢ € Qu(7).
Then, p(f) = Prob{g € Qi(y)} = 0. On the other hand,
if f is chosen such that f(g) = 0if g € Q4(v), then,
p(f) = Prob{g € Qu(7)} = 1 —Prob{g € Q4(7)} = 1.
In other words, for an arbitrarily chosen f, the probabil-
ity of ¢ being in the bad set does not mean too much.
This brings a key question of the randomized approach in
robustness analysis: What is a “reasonable” density func-
tion so that the obtained results based on this f make
sense? In this direction, a pioneer study is carried out in
[2] showing that the uniform density function fun; = 1in
Q minimizes the probability Prob{q € T} among all sym-
metric and non-increasing density functions and where the
target 7 is a convex and centrally symmetric set. In the
same paper, this result is then applied to robustness anal-
ysis of an affine polynomial family, taking as target the
so-called value set. However, the fact that 7 needs to be
convex and centrally symmetric seems a critical require-
ment which is generally not satisfied for the sets Q4(v)
and Qp(y). Given these motivations, the first objective in
this paper is to show that the uniform density function
funi has several additional interesting properties among
all density functions f that may not be symmetric and
non-increasing. In addition, in this paper, the mapping
u(-) is nonlinear, which in turn means that the target set
is not necessarily convex and centrally symmetric.

‘We now briefly summarize the main results of this pa-
per. In Section 2, we study two new worst-case optimal-
ity criteria for the uniform distribution. First, we prove
that the uniform distribution f,n; maximizes the small-
est under-estimate of p(f) and, simultaneously, minimizes
the largest over-estimate of p(f) over. all subsets Q, of
Q having the same volume of the bad set. Secondly, we
prove that the uniform density function fyn; is “optimal”
in the sense that it requires the minimum number of sam-
ples to attain a certain confidence 1 — § for all functions
u(-) in the class U of Lipschitz continuous functions. In
Section 3, for the case when f is a uniform distribution,
we compute the minimum sample size N required to es-
timate the probability that the volume of the bad set is



smaller than a certain percentage of the volume of the set
Q. As in the case of the Chernoff Bound, N is indepen-
dent of the number of uncertain parameters. In Section 4,
we then apply these. results to uncertain control systems.
In particular, we show how a number of applications in ro-
bustness can be reformulated in this setting. In Section 5,
we discuss some issues and drawbacks of the existing re-
sults and, in particular, we study cases when the bound
N grows with the problem size. Finally, in Section 6 we
provide conclusions. The proofs are given in [3].

2. Worst-Case Properties of the Uniform
Distribution

First, we define the set of allowable probability
density functions on Q.
Definition 2,1 Let F be the set of all bounded and
(Lebesgue) measurable time-invariant probability density
functions f(-) on Q, i.e., the distribution function Fy(y)

of u(q)

Fu(7) = Prob{u(g) < 7} = / f(a)dg

9€Qu(q)<y

is well-defined for any .

For given u(-) and performance level v, our goal is to
describe the bad set Qu(7) or, at least, its size. As pre-
viously discussed, although this bad set is fixed for given
u(-) and 7, it is unknown and its measure seems very hard
to determine exactly. Thus, the idea is to use randomized
algorithms to estimate this measure. That is, for each den-
sity function f, we can estimate p(f) = Prob{q € Qs(7)}
and use this p(f) to evaluate the approximate size of
Qs(7). As discussed in the previous section, however, this
probability can assume the extreme values zero or one, de-
pending on the specific choice of f. Of course, these two
cases are extreme and in a more realistic setting, since
Qs(y) is fixed but unknown, p(f) always lies between

inf
Q.eQ(y) p(f)

and  sup p(f)

Qleg('Y)

where

Qy) =

{all subset(s) Q, of @ such that vol(Q,) = vol(Qu(7))}-

Conceptually, supp(f) is an over-estimate of p(f) and
inf p(f) is an under-estimate; they both depend on f and
neither is a good estimate of p(f). However, these two
bounds can be always achieved in a worst-case scenario.
Thus, to de-emphasize the dependence on f, a better
choice would be

sup inf

y Q.eQ(—r)p(f) or inf sup p(f).

I Q.eQ(v)
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The interpretation is that to approximate p(f) and,
accordingly, its size, we use either the largest under-
estimate, which is a lower bound, or the smallest over-
estimate, which is an upper bound. In fact, the next result
shows that the largest under-estimate coincides with the
smallest over-estimate. Moreover, both these estimates
are achieved when the density function is taken as the
uniform density function fyn;.

Theorem 2.1 For any measurable function u(-), perfor-
mance level v and Qu(y), we have

sup p(f)

SUD o By PU) = Plfund) = Inf  sup
. Y

fer Q.€Q(7)

Next, we turn our attention to the following question:
Given 6 and ¢, what is an “optimal distribution” in terms
of requiring the minimum number of samples to meet a
prescribed probability for all u(-) in the class of Lipschitz
continuous functions? Interestingly, this optimal distribu-
tion turns out to be the uniform distribution. To state
this result precisely, we need a definition.

Definition 2.2 Let Uy, be the set of Lipschilz continuous
functions u(-) with Lipschitz constant L and let Fi, be the
set of all Lipschitz continuous density functions f € F
with Lipschitz constant L such that f(7) < 1— & for some
geQand £ >0.

We remark that for any non-uniform distribution,
there always exists § € @ such that f(7) < 1 — £ for some
¢ > 0. Thus, in practice, Fr is the set of all Lipschitz
continuous functions besides the uniform density function
funi- We take ¢,¢%,...,¢" iid. random samples in Q
according to f € F;, and denote the largest u(g') as

u(glu) = _max u(g)

i=1,2,...,
Finally, for given € and §, we denote by p(f) the minimum
number of samples required to satisfy

p(f) = arg min{Prob{ sup [u(gmar)—u(ges) < €} > 1-6}.
w€Uy

(2.1)
On the contrary of the criterion used to state the Cher-
noft bound, we observe that here there is only one level of
probability. In this context, the result below shows that
the uniform distribution gives the minimum sample size.
However, this sample size is an exponential function of the
number of parameters; see the comments in Section 5.
We are now ready to state the second result of this
section.

Theorem 2.2 Consider the sets Uy and Fr previously
defined. For any 6 € (0,1) and € € (0,£], we have

p(f’uni) < flggi p(f)



3. On the Minimum Sample Size for the
Uniform Distribution

Motivated by the latter result of the previous sec-
tion, we now elaborate on the issue of the minimum sample
size. We define the sample complexity as

1
lns
1

In i

Ng =

and, for completeness, we recall that the minimum sample
size for the problem of estimating wpyax with sampling is
given by the result below.
Lemma 8.1 Letu(q) be (Lebesgue) measurable. For any
feF, if

N > Ny

then,
Prob{Prob{u(q) > uw(¢N, )} < e}>1-6
for any € and § € (0,1).

This result was independently derived in our previ-
ous work [15] and in the paper [8]. We notice that the
bound given in Lemma 3.1 greatly improves upon classi-
cal results such as the Chernoff bound. For example, if
e = 6 = 0.01, by Lemma 3.1 we compute N = 460 while
with the Chernoff bound we obtain N = 26, 592. Finally,
we observe that this result is independent of the density
function f € . We now use Lemma 3.1 to establish a
connection with the volume of the bad set Qu(y) for the
specific case of uniform distribution. A similar result has
been established in [8]; the difference is that here we con-
sider the specific case of uniform distribution thus provid-
ing some valuable intuition for the result of Lemma 3.1.

Corollary 3.1 Let fyn; be a uniform density function
and let ¢*,¢% ...,q¢" be i.i.d. random samples generated
according to funi. For any € and 6 € (0,1), f

N2> Ny

then,

vol(@s(u(gmas)))
vol(Q)

The proof follows directly from Lemma 3.1 by setting f

to be equal to the uniform distribution and taking v =

u(gN,,). This result can be interpreted in terms of the
“amount of badness” of the set Qu(y) as follows: If

vol(@i(7)) < € vol(Q)

we can say that Qp(7y) is e-bad. Then, from Corollary 3.1
we conclude that if

Prob{

<e}>1-6.

In

nfp

N>Ny=

’

s

In

=

—€

fhen, with a probability at least 1 — 6, Qp(u(gl,,)) is e
bad.

4. Applications to Probabilistic
Robustness Analysis of Control Systems

The results derived in the previous sections can
be immediately applied to several problems in robustness
analysis. We now list a number of them; see the paper [8]
for a similar discussion.

Application 1: Let u(q) be the maximum real part of
the eigenvalues, where ¢ € @Q denotes the uncertain pa-
rameters. Let ¢!, i = 1,2..., N, be i.i.d. random samples
in @ generated according to a uniform distribution. If
u(g’) < 0forall i = 1,...,N and N > Ny, then, with
a probability at least 1 — 4, the volume of the unstable
set {g € Q@ : u(g) > 0} is smaller than the volume of
Qu(u(g,y)) which is no greater than € vol(Q). Thus, we
conclude that the volume of the unstable set it at most
e-bad. The same argument clearly holds for discrete time
systems. In this case, it suffices to take u(g) as the maxi-
mum magnitude of the eigenvalues and |u(g*)| < 1 for all
i=1,...,N.

Application 2: Let u(q) = ||S(s, ¢)|lc = sup,, |S(jw,q)|
be the Hy norm of the sensitivity function S(s,q). As
in the first example of this section, let ¢*, 4 = 1,2..., N,
be i.i.d zandom samples in Q generated according to a
uniform distribution in Q. If u(¢*) < yforalli =1,..., N
and N > Ny, then, with a probability at least 1 — §, the
volume of the set of “bad” plants with performance level
greater than + is smaller than the volume of Qy(u(gl,,))
which is no greater than € vol(Q). We conclude again that
the volume of the set of bad plants is at most e-bad. For
discrete time systems, the same argument holds taking
U(Q) = “S(za Q)HOO = SUPg¢{o,27) IS(eJB: Q)‘

Application 3: Let u(g) be equal to the inverse of the
structured singular value p; see e.g., [6] and [7]. If the
samples ¢*, i = 1,2,..., N, are randomly generated in Q
according to a uniform distribution and if u(g*) < 1/u for
alli=1,2,...,N and N > Ny, then, with a probability at
least 1—§, the volume of the set of plants with robustness
margin 1o greater than 1/y is at most e-bad.

5. Discussions and Remarks

The results given in this paper may have applica-
tions broader than robustness analysis. The fact that the
results are independent of the problem dimension seems
very powerful. This is not surprizing because the same
feature is well-known in the literature on Monte Carlo
simulations. This is a consequence of the fact that the
minimum sample size in Corollary 3.1 is stated in terms

of the ratio N
VOI(Qb(u(qmax)))
vol(Q) )
If the size and/or the dimension of Q increases, the size of
vol(Qs(u(gX,,))) increases as well. On a negative side, we

remark that the fact that Qu(u(gl,,)) is e-bad does not
necessarily imply that u(gl,,) is “close” to u(gmax). In
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other words, except for some simple cases, it is not possible
to estimate accurately the difference between u(gX,,) and
u(gmax) or the difference between ¢* and gmax taking only
Ny samples in Q. To elaborate, we study the two cases
[u(gmax) — u(qxIXax)l <e and [|g* ~ gmax|| < € separately.

For the case ||¢® — gmax|| < €, let u(-) achieve the
maximum guax € Q and take the norm || - || as £; the
same conclusion holds if a different norm is used. Then,
11¢* —gmax|| < €if ¢* is in the box of center gyax and radius
€

B(gmax; €) = {¢ * ||g — gmaxl| < €}.

The volume of this box is

vol B(gmax, €) = (2¢€)".

For small ¢, vol(B(gmax;€)[1Q) converges to zero expo-
nentially as the dimension of g increases. In order to have
at least one ¢* in the box B(gmax,€)[)Q, the number of
samples required has to increase exponentially, except for
pathological cases described below. In general, the mini-
mum number of samples required is no longer Np but it
is an exponential function of the dimension of ¢. One ex-
ception to this exponential growth is when u(-) achieves
more and more maximuin points guay in Q at a rate faster
than the decreasing rate of vol(B(gmax, €)1 Q). Only in
such pathological cases, the number of samples required
to meet ||¢* — gumax|| < € with probability 1 — § does not
depend on the dimension of g. )

For the second case, when |u(gmax) — u(g]ay)] < €
let u{-) be a Lipschitz continuous function with Lipschitz
constant L. Note that |u(gmax) —u(g]Nay)| < €if some sam-
ples ¢* are in the box B(gmax, €¢/L) [ Q- As previously dis-
cussed, for ¢/ L small, the volume of B(guax, €¢/L) [ Q con-
verges to zero exponentially. In turn, this implies that the
number of samples needed to satisfy |u(gmax) —u(qX.,)] <
¢ grows exponentially as the dimension of ¢ increases and
it is no longer given by Ng.

6. Conclusion

In this paper, we have shown some new results
for the so-called probabilistic approach for robustness of
uncertain systems. A subsequent and promising line of
research will focus on adaptive instead of passive random-
ized algorithms [17] with the specific goal to quantify the
size of the “bad” set.
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