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FINITE-TIME AVERAGE CONSENSUS BASED APPROACH FOR
DISTRIBUTED CONVEX OPTIMIZATION

Wenlong Ma , Minyue Fu, Peng Cui , Huanshui Zhang and Zhipeng Li

ABSTRACT

In this paper, we consider a distributed convex optimization problem where the objective function is an average
combination of individual objective function in multi-agent systems. We propose a novel Newton Consensus method as
a distributed algorithm to address the problem. This method utilises the efficient finite-time average consensus method
as an information fusion tool to construct the exact Newtonian global gradient direction. Under suitable assumptions,
this strategy can be regarded as a distributed implementation of the classical standard Newton method and eventually
has a quadratic convergence rate. The numerical simulation and comparison experiment show the superiority of the
algorithm in convergence speed and performance.

Key Words: Newton method, finite-time average consensus, distributed convex optimization, multi-agent systems,
quadratic convergence.

I. INTRODUCTION

In recent years, distributed convex optimization
has been of considerable interest in distributed con-
trol and coordination of networks consisting of multi-
ple autonomous agents (nodes). In this paper, we study
distributed algorithms for solving convex optimization
problems over networks. Our main concern is to deter-
mine a global decision variable (vector) x ∈ Rn that
minimizes an objective function f (x) = 1

N

∑N
i=1 fi(x) in a

multi-agent network. Each fi(x) represents a local objec-
tive function at node i. This problem has found various
applications in multi-agent control [1], sensor fusion in
wireless sensor network [2], and distributed learning [3]
to just name a few. A notable feature of these problems
is that the number of component functions is typically
large and each component function is available only to
an individual agent. Therefore, it is of great application
value and theoretical significance to seek for a distributed
algorithm with fast convergence for solving the convex
optimization problem.
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In the existing literature, gradient based methods
are widely used for solving the above convex optimiza-
tion problem. These methods are based on classic works
on convex optimization [4] and [5]. The poineering work
on the gradient based distributed optimization approach
is the distributed (sub-)gradient method (DSM) in [6]. If
f (x) is convex, continuously differentiable, and its gradi-
ent is Lipschitz continuous with constant L, the sequence
x(k) generated by gradient descent method converges at
rate is O(1∕k) with k being the iteration number. In the
early 1980s, Nemirovski and Yudin [7] proved that no
first-order method can converge at a rate faster than
O(1∕k2) for convex optimization problems with Lips-
chitz continuous gradient. This critical convergence rate
was proved to be achievable by Nesterov, who presented
a first-order gradient descent method that converges as
O(1∕k2) in [8]. With the Lipschitz continuous gradient
and strongly convex objective function conditions, the
Nesterov gradient method converges linearly in [9]. The
accelerated heavy-ball algorithm in [10], and accelerated
distributed Nesterov gradient method in [11] can achieve
a better (smaller) convergence factor than the one asso-
ciated with the gradient iterates, but the convergence rate
is still within the framework of linear convergence. Thus,
if we want to further improve the convergence rate and
obtain a super-linear convergence rate, we need to con-
sider using the second-order gradient information of the
objective function.

Many second-order gradient methods are also avail-
able for distributed optimization. In [12], an inexact
distributed Newton-type algorithm with the matrix split-
ting technique and dual frame to solve network utility
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maximization (NUM) problems was developed. In [13],
the Newton distributed algorithm is based on the Taylor
expansion of the inverse of the Hessian matrix. In [14], an
approximate global Newton-Raphson gradient direction
is gradually constructed by means of average consensus
protocols. The convergence of these Newton-like meth-
ods is at least superlinear under certain assumptions.A
common feature of the aforementioned literature on the
second-order gradient methods is the use of inaccurate
(approximate) Newton directions. This direction is very
convenient for distributed computing through matrix
decomposition or consensus methods However, the inac-
curate iterative direction also causes the convergence rate
to be significantly slower than using accurate Newton
directions, thus requiring a large number of iterative
steps to reach the same accuracy, causing a great burden
of calculation and information exchange. In this sense,
the distributed implementation of the accurate Newton
method can improve the convergence speed and reduce
complexity.

In this paper, based on the second-order gradient
method, we develop a distributed exact Newton algo-
rithm to solve the above convex optimization problem.
In the process of distributed implementation, average
consensus theory is a particularly suitable tool as it
allows agents to obtain global information by taking
local actions over networks [15] and [16]. Due to the
agreement based on the classic Laplacian matrix, the
consensus reached is only asymptotic. Recently, there
have been many attempts to achieve finite-time consen-
sus, for example, a sequence of time-varying stochastic
matrices were considered in [17], finite-time average con-
sensus via iterated max-consensus in [18], a distributed
continuous-time protocol in paper [19] and a new class
of nonlinear protocols in [20,21]. In our proposed algo-
rithm, we speed up the average consensus process by
replacing the Laplacian matrix based method with a new
and powerful model for information exchange and cal-
culation in [22] to reach the exact average consensus in a
finite number of iterations.

The details of the proposed algorithm are as follows.
Based on the work in article [14], the algorithm is also
divided into two layers of iterations. The outer layer is a
standard Newton iteration. In each Newton iteration, we
insert the inner layer where we use a finite-time consensus
algorithm to construct an accurate Newtonian-Raphson
gradient direction. After a finite number of iterations of
the outer layer, the algorithm will reach a quadratic con-
vergence rate. The proposed algorithm is a distributed
implementation of an exact Newton method, which is the
biggest difference from the approximate Newton method
in [14].

The rest of the paper is organized as follows. In
Section II, we define notations, the relevant algebraic
graph theory, and the relevant lemma invoked in the
paper, and formally state our problem and necessary
assumptions in Section III. In Section IV, we show our
main results on the distributed optimization algorithm.
In Section V, we simulate the performance of our algo-
rithm and compare it with other distributed algorithms.
We conclude the paper in Section VII.

II. PRELIMINARIES

2.1 Basic notations

Let R and N+, respectively, be the set of real and
natural numbers. For a matrix A ∈ Rm×m, we denote its
transpose matrix by AT . Let 1n denote the vector of n
ones, and 𝐈n (or simply 𝐈) denote the n×n identity matrix.
For matrices A and B, the Kronecker product is denoted
by A ⊗ B. For symmetric matrices A and B, A ≻ B
(A ⪰ B) indicates that matrix(A − B) is positive definite
(semi-definite). The standard Euclidean norm of vector
x ∈ Rn is denoted by ‖x‖. we use subscripts, for exam-
ple, fi(xi) to denote the local function of node i with its
own local state xi, the aggregated form of xi is the vector
𝐱 = [xT

1 , x
T
2 , · · · , x

T
N]

T .

2.2 Graph theory

We briefly review some basic concepts from alge-
braic graph theory following [15]. A graph (a network)
can be expressed as a triplet G = ( ,  ,A), where  =
{1, · · · ,N} is the node set,  ⊆  ×  is the edge set, and
A is the adjacency matrix which is defined as aij = 1 if
(i, j) ∈  and aij = 0, otherwise. A graph is undirected if
(i, j) ∈  anytime (j, i) ∈  . An undirected graph is called
connected if there is path from every node in  to every
other node.

2.3 Classical optimization theory

Lemma 1. Suppose f icfferentiable, ∇2f (x) is positive
definite and upper bounded. Let x∗ is the global opti-
mal decision, For 𝛿 > 0, let S𝛿 denote the sphere {x ∣‖x − x∗‖ ≤ 𝛿}. Then

1. Consider a sequence {x(k)} generated by the New-
ton gradient iteration:

x(k + 1) = x(k) − (∇2f (x(k)))−1∇f (x(k)),
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if exists 𝛿 > 0 and x(0) ∈ S𝛿, Then, x(k) ∈ S𝛿 and
with the super-linear convergence rate

‖x(k + 1) − x∗‖ ≤ C‖x(k) − x∗‖p

with p > 1, where C is a constant.
2. If for some L > 0, Q > 0, 𝛿 > 0, and for all x and y

in S𝛿,

‖∇2f (x) − ∇2f (y)‖ ≤ L‖x − y‖
‖(∇2f (x))−1‖ ≤ Q

then, if x(0) ∈ S𝛿, we have

‖x(k + 1) − x∗‖ ≤ LQ
2

‖x(k) − x∗‖2

so if LQ𝛿

2
< 1 and x(0) ∈ S𝛿, ‖x(k) − x∗‖ converges

super-linearly with order at least two, that is, the
Newton gradient iteration is quadratic convergence.

This result is standard in [5] (e.g., Proposition 1.4.1).

III. PROBLEM FORMULATION

Now we consider a scenario where nodes coopera-
tively minimize a global system objective. In a network
 = { ,  ,} of N nodes, each node is associated with
a cost function fi ∶ Rn → R which is a convex objective
function known only by node i, and f ∶ Rn → R is a
well-defined global cost function. Our overarching goal
is to solve the optimization problem

x∗ = arg min
x∈Rn

f (x) = arg min
x∈Rn

1
N

N∑
i=1

fi(x). (1)

Assumption 1. The undirected and connected graph
( , ) has a support tree and no loops.

Remark 1. For a loopy graph, we just need to increase
an algorithm process of finding the support tree in
order to apply our results, the standard algorithms are
depth-first search and breath-first search in graph theory
[23] with complexity O(|| + ||). And [22] proposed a
new depth-first search algorithm, which can handle these
operations in a distributed way with low complexity.

Assumption 2. All the local function fi(x) are twice differ-
entiable and have bounded and strictly positive definite
Hessian, which means that the eigenvalues of the local
Hessians are within the interval [m,M] where 0 < m ≤
M ≤ ∞, that is, 0 ≺ m𝐈 ⪯ ∇2fi(x) ⪯ M𝐈, ∀x ∈ Rn.

Remark 2. If f is twice continuously differentiable and
there exist constants m > 0 such that ∇2f (x) ⪰ m𝐈 for
all x ∈ Rn which means f is strongly convex, then the
optimal decision value x∗ is unique.

Assumption 3. The local objective function Hessians
∇2fi(x) are Lipschitz continuous with parameter L. I.e.,‖∇2fi(x) − ∇2fi(y)‖ ≤ L‖x − y‖, ∀x, y ∈ Rn.

From the above two assumptions, we can naturally
introduce the following proposition.

Proposition 1. Under Assumption 2 and 3, as every cost
function fi(x) holds a bounded positive definite Hessian
and ∇2fi(x) is Lipschitz continuous with L, then function
f (x) also satisfies 0 ≤ m𝐈 ≤ ∇2f (x) ≤ M𝐈, ‖∇2f (x) −
∇2f (y)‖ ≤ L‖x − y‖ and ∀x, y ∈ R, and ‖(∇2f (x))−1‖ is
bounded with Q(= 1

m
).

IV. MAIN RESULTS

The main problem (1) is an unconstrained opti-
mization problem, which holds a global decision variable
in the whole network  = ( ,  ,). As the network
is connected, the main problem can be rewritten as an
equivalent form:

x∗ = arg min
x∈Rn

1
N

N∑
i=1

fi(xi)

s.t. xi = xj,∀i ∈  , j ∈ i.

(2)

where the constraints is equivalent to xi = x̄ =
∑

i xi

N
for

all i ∈  .

4.1 Newton optimization

In the following, we mainly consider this equiv-
alence problem (2), first, putting away the constrains
temporarily, then we get a series of optimal value points
{x∗

i }
N
i=1 where

{x∗
i }

N
i=1

.
= arg min

x∈Rn

1
N

N∑
i=1

fi(xi),∀i ∈  . (3)

As the objective function is separable now, based
on pure standard Newton iteration (where the step size
in every iteration is unit), every single node i ∈ 
(decision-maker) could simply minimize its own cost
independently, that is,

xi(k + 1) = xi(k) − (∇2fi(xi(k)))−1∇fi(xi(k)),
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where k ∈ N+ is a discrete time index, xi(k) is the k-th
decision variable of node i. The second term on the right
is named the local Newton gradient direction of node i.

The iterative formula can be transformed into

xi(k + 1) = 𝜓i(xi(k)),∀i ∈  , (4)

where 𝜓i(xi(k)) = (hi(xi(k)))−1gi(xi(k)) is the local
Newton-Raphson gradient direction of node i, and

hi(xi(k))
.
= ∇2fi(xi(k)), (5)

gi(xi(k))
.
= hi(xi(k))xi(k) − ∇fi(xi(k)). (6)

Now we begin to deal with the problem (2), in a
global perspective, let 𝐱 = [xT

1 , · · · , x
T
N]

T , we need the cor-
responding global average h̄(𝐱(k)) and ḡ(𝐱(k)) which are
defined as:

h̄(𝐱(k))
.
= 1

N

N∑
i=1

∇2fi(xi(k)), (7)

ḡ(𝐱(k))
.
= 1

N

N∑
i=1

[hi(xi(k))xi(k) − ∇fi(xi(k))]. (8)

and we mark 𝜓(𝐱(k))
.
= (h̄(𝐱(k)))−1ḡ(𝐱(k)).

We consider the following dynamical system

xi(k + 1) = 𝜓(𝐱(k)), i = 1, · · · ,N. (9)

which means every node i ∈  is driven by the same
global forcing term 𝜓(𝐱(k)). Furthermore, under the
identical initial condition xi(0) = x̄(0),∀i ∈  , the trajec-
tories of every node coincide which also means that the
constrains xi(k) = xj(k) = x̄(k),∀i, j ∈  are hold in every
iteration k.

Then constraints in problem (2) are met, and
𝜓(𝐱(k)) is the global Newton-Raphson gradient direc-
tion of the objective function which means that (9) is the
pure Newton iterate of problem (2). When the initial iter-
ation point close to the optimal solution point x∗ and
x̄(0) ∈ S𝛿 = {x ∣ ‖x−x∗‖ ≤ 𝛿}, under Assumption 2 and
Assumption 3, Proposition 1 holds and the conditions in
Lemma 1 can be easily satisfied, then the convergence of
the iteration (9) is guaranteed.

4.2 Finite-time average consensus

In the undirected and acyclic connected graph ,
we seek a peer-to-peer consensus protocol to make the
global variables h̄(𝐱(k)) and ḡ(𝐱(k)) available for each
node through a distributed way in a finite time. In this
subsection we modify the algorithm of the finite-time
consensus method proposed in [22] to fit our calculations
and make it easy to insert into the Newton iteration (9).

Here l ∈ N+ is used to indicate the number of con-
sensus iterations while k for the Newton ieration. In order
to express convenience, for a fixed k in every Newton iter-
ation, let si→j(l) and ti→j(l) denote gi(xi(k)) and hi(xi(k))
which were passed from node i to node j at time l without
using information from node j. 𝜔i→j(l) is the number of
nodes used to compute si→j(l) and ti→j(l) and passed from
node i to node j at time l. Three internal variables �̃�i(l),
s̃i(l) and t̃i(l) are defined to represent the sum value of the
weight and variables in node i in the l-th iteration. We
make 𝜔i(l) = 𝜔i(k) = 1,∀i ∈  ,∀l, k > 0 for the standard
average consensus. With the necessary initial conditions,
The concrete implementation is summarized below:

1. Initialization step (l = 0)

𝜔i→j(0) = 𝜔i(k), (10)

si→j(0) = gi(xi(k)), (11)

ti→j(0) = hi(xi(k)). (12)

2. At iteration l = 1, 2, · · · , d, for each node i, compute

�̃�i(l) = 𝜔i(k) +
∑
j∈i

𝜔j→i(l − 1), (13)

s̃i(l) = gi(xi(k)) +
∑
j∈i

sj→i(l − 1), (14)

t̃i(l) = hi(xi(k)) +
∑
j∈i

tj→i(l − 1). (15)

3. Then for each j ∈ i, compute

𝜔i→j(l) = �̃�i(l) − 𝜔j→i(l − 1), (16)

si→j(l) = s̃i(l) − sj→i(l − 1), (17)

ti→j(l) = t̃i(l) − tj→i(l − 1). (18)

Lemma 2. We consider the graph  is undirected and
acyclic with diameter d. Let i(l) is the set of nodes in 
that are at most l hops away from node i (∀l > 0 and i is
not in i(l)). Naturally we can easily get

�̃�i(l) = 𝜔i +
∑

j∈i(l)
𝜔j, (19)

s̃i(l) = gi(xi(k)) +
∑

j∈i(l)
gj(xj(k)), (20)

t̃i(l) = hi(xi(k)) +
∑

j∈i(l)
hj(xj(k)). (21)

Then for every i ∈ V , when l ≥ d, the average consensus
is achieved, that is,

ḡ(𝐱(k)) =
s̃i(l)
�̃�i(l)

, (22)
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h̄(𝐱(k)) =
t̃i(l)
�̃�i(l)

. (23)

The proof of Lemma 2 is shown in the appendix.
For an arbitrary fixed k, the global variables h̄(𝐱(k)) and
ḡ(𝐱(k)) can be available for each node i ∈  through the
lemma 2. Then an accurate global Newton-Raphson gra-
dient direction 𝜓(𝐱(k)) = (h̄(𝐱(k)))−1ḡ(𝐱(k)) is built by a
distributed way and available for each node.

4.3 Fast newton consensus algorithm

In this section, we synthesize the Newton itera-
tion algorithm and the finite-time consensus algorithm
to build a new fast Newton consensus optimization algo-
rithm (FNC), which is summarized in Algorithm 1.

Algorithm 1 Fast Newton Consensus Algorithm(FNC)
Storage allocation and parameters: xi, yi, zi ∈ R, 𝜔i = 1,
𝛼i(k) = 1 for i ∈  ; 𝜖(k) = 1,∀k, 𝜂 = m2∕L
Initialization: xi(0) for all i ∈ 
Main loop:

1: for k = 0, 1, 2, · · · do
2: Inner Iteration Initialization:
3: For each nodes i ∈  and j ∈ i,
4: 𝜔i→j(0) = 𝜔i
5: si→j(0) = gi(xi(k))
6: ti→j(0) = hi(xi(k))
7: for l = 1, 2, · · · , d do
8: for each node i, compute
9: �̃�i(l) = 𝜔i +

∑
j∈i

𝜔j→i(l − 1)
10: s̃i(l) = gi(xi(k)) +

∑
j∈i

sj→i(l − 1)
11: t̃i(l) = hi(xi(k)) +

∑
j∈i

tj→i(l − 1)
12: then for each j ∈ i, compute
13: 𝜔i→j(l) = �̃�i(l) − 𝜔j→i(l − 1)
14: si→j(l) = s̃i(l) − sj→i(l − 1)
15: ti→j(l) = t̃i(l) − tj→i(l − 1)
16: end for
17: y(k) = s̃i(d)

�̃�i(d)

18: z(k) = t̃i(d)
�̃�i(d)

19: if ‖y(k)‖ ≥ 𝜂 then
20: 𝜖(k) = (k + 1)∕(k + 2)
21: end if
22: for i = 1, 2, · · · ,N do
23: xi(k + 1) = (1 − 𝜖(k))xi(k) + 𝜖(k)(z(k))−1y(k))
24: end for
25: end for
26: return

The outer layer (Steps 19 ∼ 24) of the algorithm
is a modified Newton iteration for optimization. The
inner layer (Steps 2 ∼ 18) applies the finite-time average
consensus to obtain accurate global decision variables
for every node in a finite number of iterations.The main
descent iteration is implemented in Step 23, which is a lin-
ear combination of the old estimate and the new estimate
of the node for the optimal value point x∗. When 𝜖 = 1,
the iteration become the pure Newton iteration. Relative
to (9), the additional parameters 𝜖 ∈ (0, 1] and (1− 𝜖) are
a conservative mechanism.

Under the same initial value 𝐱(0) = x(0) ⊗ IN and
x(0) ∈ S𝛿, the main descent iteration in Step 23 is

xi(k + 1)
= (1 − 𝜖)xi(k) + 𝜖(z(k))−1y(k))
= (1 − 𝜖)xi(k) + 𝜖(h̄(𝐱(k)))−1ḡ(𝐱(k))
= xi(k)

− 𝜖

(
1
N

N∑
i=1

∇2fi(xi(k))

)−1
1
N

N∑
i=1

∇fi(xi(k)).

The iterative process is the same for any i ∈  , that is,
xi(k) = xj(k) = x̂(k),∀i, j ∈  and ∀k > 0. Then iteration
of each node can be uniformly written as follows:

x(k + 1) = x(k) − 𝜖(k)∇2f (x(k))−1∇f (x(k)). (24)

Through the above simplification, 𝜖(k) can also be seen
as a common iteration step size. In the following theorem
we show the convergence property of Algorithm 1.

Theorem 1. Consider the dynamics in Algorithm 1 with
Assumptions 1, 2 and 3. Taking xi(0) = x(0),∀i ∈  , with
x(0) ∈ dom(f ), the sequence {xi(k)},∀i ∈  , generated
by the algorithm has the following properties: For 𝜂 =
m2∕L,

1. If ‖∇f (x(k))‖ ≥ 𝜂, then f (x(k))− f (x∗) ≤ −𝛾, where
𝛾 = 𝛼𝛽𝜂2 m

M2 .
2. If ‖∇f (x(k))‖ < 𝜂, then {‖f (x(k)) − f (x∗)‖}

decreases at a quadratic rate. Furthermore, when
L∕2m < 1, the sequence {‖x(k) − x∗‖} is also
quadratic convergent.

This theorem ensures the convergence of the algo-
rithm for x(0) ∈ domf . It eventually has a quadratic
convergence rate and trajectories of every node are con-
sistent with the standard Newton iteration. The detailed
proof is in the appendix.
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Remark 3. Although the initial value can be arbitrarily
selected within the domain. However, a bad initial value
(away from the optimal value point) will increase the iter-
ation number. And in the general case where the initial
condition in every node i is not identical, we need to
add a finite-time consensus process for xi(0) in the whole
network before the optimization process. In this sense,
the initial value of each node can be chosen as the opti-
mal point of the respective objective function. This will
significantly reduce the number of iterative steps.

V. COMPARISON ANALYSIS AND
NUMERICAL SIMULATION

In this subsection, we study the performance of our
algorithm and compare with two representative methods
in a tree communication network environment. The topo-
logical network is showed in Fig. 1. For convenience of
presentation and simplification of calculation, we limit
the variable x(k) to scalar form and the scalar cost func-
tion with the form fi(x) = cie

aix + die
−bix, i = 1, 2, · · · ,N,

with ai, bi ∼ U[−1, 1], ci, di ∼ U[0, 1] where U indicates
the uniform distribution. These fi and f fulfill Assump-
tion 2 and 3. Fig. 2 shows images of these fi and f and
indicates the optimal value point x∗ = 0.3275 (compute
in advance). The relative MSE (mean square error) is
defined:

MSE(k) = 1
N

N∑
i=1

∥ xi(k) − x∗ ∥2

∥ x∗ ∥2
. (25)

5.1 Comparison with existing methods

In this subsection, we compare the performance of
the proposed Fast Newton Consensus (FNC) method
with the Newton-Raphson Consensus (NRC) method in
[14], and Distributed Sub-gradient Methods (DSM) in
[6]. The mean of the total nodes in the k-th iteration is
expressed as x−(k). Taking the initial value xi(0) = 5.
In NRC, based on the above analysis, let 𝜀 = 0.1, P =
IN − (1∕4) ∗ L is the max degree weight matrix which is
the doubly stochastic matrix. In DSM, we use the same
weight matrix P and choose the step size 𝜖(k) = 𝜌∕k and
𝜌 > 0.

Fig. 3 shows the performance of the three meth-
ods. In the first panel of Fig. 3, the convergence per-
formance of the proposed algorithm is illustrated. The
update trajectory of each node coincides. The conver-
gence performance of NRC are shown in the second
panel of Fig. 3, In the last panel of Fig. 3, in contrast,
the DSM has the worst performance. In general, our

Fig. 1. Network topology.

Fig. 2. Graphs of the functions fi and f ,together with the
optimal value point x∗ = 0.3275.

algorithm has the best aggregation effect and the fastest
convergence speed. Fig. 4 compares the mean evolution
of those iterative processes based on the relative MSE.
The convergence of proposed algorithm is extremely
rapid. Once the second condition in the theorem ise sat-
isfied, the rate of quadratic convergence and trajectories
of every node are consistent with the standard Newton
iteration, which means that the algorithm happens to be
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Fig. 3. Fast Newton Consensus (FNC), Newton-Raphson
Consensus (NRC) and Distributed Sub-gradient
Methods (DSM) with 𝐱(0) = 5.

Fig. 4. MSE of the three algorithms together with Central
Newton method (CN) in 𝐱(0) = 5.

a distributed implementation of the standard centered
Newton method.

5.2 Complexity analysis and comparison

The design principle of our algorithm is to reduce
the number of outer iterations at the expense of adding
multi-step inline finite-time consensus, while algorithm
NRC only includes a single common consensus step.
Every single iteration of the two consensus involves
roughly the same amount of information exchange and
computation.

In Fig. 4, we truncate our algorithm within k = 8
iterations and ensure good convergence accuracy (10−5).
In order to fairly compare the two algorithms, under the
same amount of information exchange, we compare the
performance of our algorithm in 8-th iteration and the
NRC in 48(8×6)-th iteration where d = 6, our algorithm
enjoys an outstanding convergence accuracy. With the
same accuracy requirements (10−5), The ratio of exter-
nal iterations is almost 10 to 200. The computation and
memory costs of our algorithm are far less than the NRC
With a rough ratio of 60 to 200.

VI. CONCLUSION

We have presented a novel fast distributed Newton
algorithm to solve a convex optimization problem.
Under necessary assumptions, our algorithm is a dis-
tributed implementation of standard Newton iterations,
and a quadratic linear convergence rate can be guar-
anteed through the theoretical analysis and numerical
simulation. Compared with other representative first-
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order and second-order distributed gradient optimiza-
tion methods, the simulation results further demonstrate
the advantages of the algorithm in convergence speed and
efficiency. As future work, we will try to extend the pro-
posed algorithm to loop graph and consider the convex
optimization problem with local and global constraints.

VII. APPENDIX

Proof of Lemma 2. The concrete proof is taken from the
literature [22]. As the graph is acyclic, the decomposition
 = i∪(i, j)∪j can be done simply by only removing the
edge (i, j) where i and j are the disjoint subgraphs of .
i and j are the corresponding sets of nodes for disjoint
subgraphs respectively.

At the initialization step (l = 0), 𝜔i→j(0) = 𝜔i(k) =
1. According to the previous relevant definitions, 𝜔i→j(1)
contains all 𝜔m→i(0) for all nodes m in i, except node
j, and with the definition of i(1), this calculation can be
expressed as

𝜔i→j(1) = 𝜔i +
∑

m∈i(1)⧵j

𝜔m. (26)

For the case l = 2, 𝜔i→j(2) contains all 𝜔m→i(1) for all
nodes m in i except node j. In other words 𝜔i→j(2)
includes all the nodes’ weights at least 2 hops away from
node i, except those in j, that is

𝜔i→j(2) = 𝜔i +
∑

m∈i(2)⧵j

𝜔m. (27)

Repeat the above, through mathematical induction, we
can get,

𝜔i→j(l) = 𝜔i +
∑

m∈i(l)⧵j

𝜔m,∀l > 0. (28)

If node j(∈ i) is l hops away from node i, then all the
nodes in j that are l − 1 hops away from node j are
actually l hops away from node i, that is,

i(k) ⧵ j ⊔ j(k − 1) ⧵ i ⊔ {j} = i(k). (29)

Then we naturally get the following form:

�̃�i(l) = 𝜔i→j(l) + 𝜔j→i(l − 1)

= 𝜔i +
∑

m∈i(l)⧵j

𝜔m + 𝜔j +
∑

m∈j(l−1)⧵i

𝜔m

= 𝜔i +
∑

m∈i(l)
𝜔m.

(30)

And the other two similar form of s̃i(l) and t̃i(l) in the
lemma can be shown in the same way.

When l ≥ d, i(l) =  ,∀i ∈  . With the above
form, the internal sum variables w̃i(l), s̃i(l) and t̃i(l) will
remain unchanged for every i and the corresponding val-
ues are the sum of the corresponding state values of the
entire network node without duplication and omission.
The average consensus are achieved by corresponding
division (22-23).

□
Proof of Theorem 1. As the iterative process of each node
can be uniformly written as follows:

x(k + 1) = x(k) − 𝜖(k)∇2f (x(k))−1∇f (x(k)). (31)

Similar to standard Newton convergence analysis in [4],
The proof is divided into two phases: the damped New-
ton phase and the pure Newton phase.

(1) Assume ‖∇f ‖ ≥ 𝜂, which means the initial point
is far from the optimal value point. We firstly show
there will be a lower bound on the step size. We note
Δxnk = −(∇2f (x(k)))−1∇f (x(k)), then x(k + 1) =
x(k) + 𝜖(k)Δxnk. The bound mI ⪯ ∇2f (x) ⪯ MI
implies an upper bound on the function f (k + 1):

f (x(k + 1)) ≤ f (x(k)) + 𝜖(k)∇f (x(k))TΔxnk

+
M‖Δxnk‖2t2

2
≤ f (x(k)) − 𝜖(k)𝜆(x(k))2

+ M
2m

𝜖(k)2𝜆(x(k))2,

(32)

where 𝜆(x) ∶= (ΔxT
nk
∇2f (x(k))Δxnk)1∕2 and 𝜆(x)2 ≥

m‖Δxnk‖2. Minimize the right part of the above
inequality for 𝜖(k):

f (x(k) + 𝜖(k)Δxnk) ≤ f (x(k)) − m
2M

𝜆(x(k))2

≤ f (x(k)) − 𝛼𝜖(k)𝜆(x(k))2.

Here 𝜖(k) = m∕M and it satisfies the exit condi-
tion of the line search where 𝛼 ∈ (0, 1∕2] and 𝛽 ∈
(0, 1∕2). And then 𝜖(k) = (k + 1)∕(k + 2) is feasible
as an actual calculation with 𝜖(k) ≥ 𝛽m∕M,∀k ≥ 1.
As 𝜆(x)2 ≥ (1∕M)‖∇f (x(k))‖2 and we noted 𝛾 =
𝛼𝛽𝜂2 m

M2 then
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f (x(k)) − f (x(k + 1)) ≥ 𝛼𝜖(k)𝜆(x(k))2

≥ 𝛼𝛽
m
M

𝜆(x(k))2

≥ 𝛼𝛽
m

M2
‖∇f (x(k))‖2

≥ 𝛼𝛽𝜂2 m
M2

.

(33)

This means that our iteration not only ensures that
the value of the function continues to fall, but also
that the magnitude of the drop has a corresponding
lower bound.

(2) If ‖∇f (x(k))‖ ≤ 𝜂, which means that the iteration
variable x(k) enters a small 𝛿 domain of the optimal
value point. We can choose 𝜖(l) = 1,∀l ≥ k and

L
2m2

‖∇f (x(k+1))‖ ≤ ( L
2m2

‖∇f (x(k))‖)2. (34)

A detailed explanation of above conclusion can be
found in [4]. Applying the above inequality recur-
sively, for l ≥ k,

L
2m2

‖∇f (x(l))‖ ≤ ( L
2m2

‖∇f (x(k))‖)2l−k ≤ (1
2
)2l−k

,

and hence

f (x(l))− f (x∗) ≤ 1
2m

‖∇f (x(l))‖2 ≤ 2m3

L2
(1
2
)2l−k+1

.

This inequality shows that convergence is quadratic
convergence which is extremely rapid. To further
analyze the iteration of x where xi = x,∀i ∈  :

x(k + 1) − x∗

= x(k) − x∗

− 𝜖(k)( 1
N

N∑
i=1

∇2fi(x(k)))−1 1
N

N∑
i=1

∇fi(x(k))

= ( 1
N

N∑
i=1

∇2fi(x(k)))−1{ 1
N

N∑
i=1

∫
1

0
[∇2fi(x(k))

− 𝜖(k)∇2fi(x∗ + t(x(k) − x∗))]dt(x(k) − x∗)}

≤ 1
m

1
N

N∑
i=1

∫
1

0
[∇2fi(x(k)) − 𝜖(k)∇2fi(x∗

+ t(x(k) − x∗))]dt(x(k) − x∗).
(35)

Let 𝜖(l) = 1,∀l ≥ k, (35) can be further relaxed as

‖x(k + 1) − x∗‖
≤ 1

m
{ 1

N

N∑
i=1

∫
1

0
[Lt𝜖‖x(k) − x∗‖]dt(x(k) − x∗)}

≤ L𝜖
2m

‖x(k) − x∗‖2.

When L
2m

< 1, the sequence {‖x(k + 1) − x∗‖} is at
least quadratic linear convergence. □
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