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Abstract

In this paper, we consider the robust linear quadratic (LQ) control problem for
a class of uncertain linear systems which are subject to a general type of integral
quadratic constraints (IQCs). Both analysis and synthesis problems are considered
in this paper. For the analysis problem, we determine if the system satisfies a de-
sired linear quadratic performance index for all admissible uncertainties subject to
the IQCs while for the synthesis problem, we look for a dynamic output regulator
to guarantee certain level of performance index. We show that the two addressed
problems can be effectively solved using linear matrix inequalities (LMIs). Some
discussions on the optimization of the guaranteed performance index are also in-
cluded.
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1 Introduction

Recently, the linear matrix inequality (LMI) approach has attracted a lot of attention
for control theory, especially in H,, analysis and synthesis, see [5, 6], for example. Two
advantageous features are offered by the LMI approach when used in H,, analysis and
synthesis: i) It is computationally efficient due to the recent progress in convex optimiza-
tion (see, e.g., [7] and [8]); and ii) It is simple to treat the so-called singular case (see [6],
for example).

Linear quadratic (LQ) control is well-known in modern control theory. However, this
technique only suits for systems without uncertainty. Practically, only an approximate
model of a physical system is available for control design. Hence, a useful control design
should cater for the potential uncertainty of the model. Usually, a robust controller
is required to guarantee not only the robust stability of the system but also certain
level of performance. In [2], an adaptive control scheme is used to achieve guaranteed
quadratic performance. Robust LQ control techniques have been developed in [1] and
[3] to cope with continuous-time systems with norm bounded uncertainty. A worst-case
H, performance analysis and synthesis for systems which are subject to single block non-
casual disturbances with bounded Ls-induced operator norm are given in [4].

The LQ control problems reported in [1] and [3] can be summarized as follows: Given a
linear system involving some norm-bounded uncertainty in the state-space matrices, the
robust L@ analysis problem is to find a tight upper bound for the quadratic performance
index. Similarly, the robust LQ) synthesis is to design an feedback controller such that
the uncertain system is stabilized and the upper bound for the specific LQ performance
index is minimized. A typical solution to the robust LQ analysis/synthesis problem is to
convert it into a “scaled” H., analysis/synthesis one which replaces the norm-bounded
uncertainty by some scaling parameters (see, [3] and [4] for example). By searching the
scaling parameters iteratively, the latter problem is solved using standard ARE approach.
However, this approach has three disadvantages: i) Solving AREs are not numerically
efficient; ii) The scaling parameters enter the AREs nonlinearly for the “scaled” H
analysis and synthesis, which makes it much more complicated to solve the AREs; and
iii) The norm-bounded uncertainty assumption is not general enough and has certain
limitation in describing physical systems.

In this paper, we consider the robust LQ) analysis and synthesis problem for a class of
uncertain linear systems where the uncertainty is described by some integral quadratic
constraints (IQCs). The robust LQ analysis problem is to determine if the L, norm
of the error output is less than a quadratic function of the initial state for all possible
uncertainty satisfying the given IQCs. In parallel, the robust L(Q) synthesis problem is
to design a feedback controller such that for all admissible uncertainties satisfying IQCs,
the upper bound for the L, norm mentioned above is minimized. The IQCs used in our
paper are very general in nature.

We apply the so-called S-procedure [9] to the IQCs and show that the resulting problem
can be solved using linear matrix inequalities (LMIs). Namely, the robust L() analysis
problem can be solved by using single LMI which is jointly linear in two sets of variables:



a positive-definite matrix for LQ performance and the scaling parameters. The robust
LQ synthesis problem can be solved by using two LMIs. The first LMI is jointly linear
in a positive-definite matrix for state-feedback and the inverses of the scaling parameters.
The second LMI is jointly linear in a positive-definite matrix for observer design and the
scaling parameters. Since one LMI is linear in the scaling parameters and the other in
their inverses, the two LMIs are not jointly linear in the scaling parameters. However,
the state feedback case can be dealt with by using a single LMI which is fully linear.

The rest of the paper is organized as follows: Section 2 studies the robust L() analysis
problem: section 3, the synthesis problem; and the concluding remarks are given in section
4.

2 Robust LQ Analysis

Consider the following linear system:

(t) = Aa:(t)—f—iHlifi(t), z(0) = xg (1)
o) = Cx<t>+§;ﬂ2@<t) 2)

where x(t) € R"™ is the state, z(t) € R" the error output, and &(t) € R* the uncertain
variables satisfying the following IQCs:

T T
/0 ||§Z~(t)||2dt§/0 | Ev(t) + Ex(t)|2dt, asT — o0, i=1,---,p 3)

with
) =161 @)--& @]
Also, A,C, Hy;, Hy;, E1; and E»; are constant matrices of appropriate dimensions.

We define the quadratic performance index J as following:

N A EOIR

where

R = [C HJ|'[C H,

_ [crc c"H, )
~ | HI'Cc HIH,
.H2 — [Hgl H22 H2p]. (6)



Then the robust LQ analysis problem is as follows: Given the system (1)-(2) with uncer-
tainties described by the IQCs (3), determine if the system is asymptotically stable and
find a positive function, G(xo), such that

J < G(iﬂo) (7)

for all admissible uncertainties satisfying (3). Furthermore, minimize the cost function

G(l‘o)

To simplify mathematical description, we introduce some short-hand notation:

le[Hll“‘Hlp]S H2:[H21...H2p] (8)

Bl =B}, - EL}; Ef =[Ej - Ey) (9)

T=(11,--,7p) (10)

J:diag{Tllkl,"',TpIkp} (11)
where 7, - - -, 7, are scalars and k; are the numbers of columns of H;.

Applying the well-known S-procedure[9, 10], we have the following fundamental result:

Lemma 1. Given the system (1)-(2), if there exist a symmetric positive definite matriz

P € R™™ and scaling parameters i,---, 7, > 0 such that
P p T
27 P(Ax+ Y Hii&) + 37l B + Enié? — 1619 + [ () ] R [ 10 <o,
e | | e
Vo € R"&eRM i=1,-p (12)

then the system is asymptotically stable and condition (7) holds with G(x) = xf Pxy.

Proof. Let V(z) = 2" Pz be a Lyapunov function candidate of the system (1)-(2).
Then, the asymptotic stability of the system is clearly implied by (12). Integrating the
left hand side of the inequality in (12) along any trajectory of the system (1)-(2), we
obtain:

o7 (T)Pa(T) — 27(0) P2 (0) + 237 {/OT | B (t) + B (8)][2dt — /UT ||§Z~(t)||2dt}

T T

L0 [0

o | € £(1)

Since the system is asymptotically stable, z(7') — 0 as T — oo. Hence, by considering
(3), the above inequality leads to

J < xt Pay.
Q.E.D.

Using this fundamental lemma, we obtain the following theorem which establishes several
equivalent conditions to (12):



Theorem 2. Given the uncertain system (1)-(2), the following conditions, all guaran-
teeing the solution to the linear quadratic analysis problem, are equivalent:

(i) There exist P = PT >0 and J > 0 in (11) such that (12) holds;
(ii) There exist P = P* >0 and J > 0 in (11) solving the following LMI:

[ AP+ PA+ ETJE, +CTC PH,+ EYJE, +CTH,

L= wrpyENIE cHIC g+ ELJE, +HIH, | < (13)
(iii) There exist P = PT >0 and J > 0 in (11) solving the following LMI:
ATP+PA PH, CT ETJ
_| H'P  —J H] E]J
= C Hy —-I 0 <0 (14)

JEy JEy, 0 —J

(iv) There exists J > 0 in (11) such that the following auziliary system is asymptotically
stable and the Huoo-norm of the transfer function from w(-) to Z(-) is less than 1:

(t) = A#(t)+ H,J V0(t) (15)
{0 = | g, [s0+ ] 5 et (16

Proof. (i) < (ii):

Rewrite the inequality (12) as follows:

T
Ex x(t) x(t)
20T P(Ax + H\&) + («T BT + TETJl ! ]—TJ +l ] Rl <0,
( 15) ( 1 f 2) ng f f f(t) f(t)
Vee R\,&EER i=1,--p (17)
which is equivalent to
[27 5T]LI[§ <0, Ve e R &eRMi=1,---p (18)
i.e., (13) holds.
(ii) <= (iv):
Denote
B = HJY? (19)
ct = [o" E'JVY (20)
DT = [JY2HT JYREL gV (21)



and o ) o
ATP+ PA+CTC PB+CTD

L, = . R N 22
' BTP+D'C  —I+D'D (22)
the auxiliary system (15)-(16) can be rewritten as follows:
z(t) = Az(t) + Bu(t) (23)
2(t) = Ci(t) + Du(t) (24)
Further, we note the matrix £; in (13) can be alternatively expressed as follows:
£y = diag{1l,, J'*}L,diag{L,, J'/*} (25)

That is, £; < 0 if and only if £, < 0. Therefore, by the well known bounded real lemma
[11], A is asymptotically stable and ||D + C(s] — A) ' B||s < 1 if and only if £; < 0 for
some P = PT > (. Hence, (ii) is equivalent to (iv).

(ii) <= (iii):

Note that £, < 0 if and only if the following holds:

ATP+PA PB CT
Ly = BTP —1 DT | <0 (26)

~

C D -1
which is derived from the well-known Schur complements that

T
le X2 <0 <=> X; <0 and X;+X7X,<0 (27)

Xy —1

The equivalence between L, < 0 and £, < 0 can be established by similar manipulations
used on £, and £;. The details are hence omitted. Q.E.D.

Remark 1. H, performance analysis for systems with single block of uncertainty has been
tackled in [4] where a Lagrange multipliers and Riccati equation approach is used. Our
result in Theorem 2 is concerned with systems with multi-block of uncertainty and is
obtained by applying the S-procedure and LMI approach. It can be observed from (14)
that P and J are jointly linear and hence the convex optimization can be applied to obtain
a tighter bound for the performance index. Generally, we are dealing with the following
standard eigenvalue problem (EVP):

minimize i Pxg
subject to P >0, J >0, and LMI (14)

When there is a feasible solution to constraints P > 0, J > 0 and LMI (14), the EVP can
be solved using standard optimization algorithms such as ellipsoid algorithm or the more
efficient interior-point algorithm; see [8, 7] and the references therein for details about
EVP optimization. To facilitate the optimization, we consider two situations:
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(a) Assuming that z¢ is a random variable with Ez¢z! = @, replace the performance
index of (4) by its expectation. Then, Lemma 1 implies that £J < tr(QP);

(b) Let xy be from the set
S ={xy = Bu, |jv]| <1}

Then, it follows from Lemma 1 that J < A.. (B PB).

A convex optimization can be set up to minimize the upper bound by using Theorem 2.

3 Robust LQ Synthesis

Consider the following uncertain system generalized from (1)-(2):

(t) = Ax(t)+ Bu(t) + i Hy&(t), x(0) = (28)
Z(t) = Cll’(t) + Dlu(t) + i HQ@&Z (t) (29)
y(t) = Cyx(t) + Dyul(t) + i H3:&(t) (30)

where z(t) € R" is the state, u(t) € R the control input, z(t) € R" the controlled output,
y(t) € R'™ is the measured output, and &(t) € R¥ the uncertain variables satisfy the
following IQCs:

T T
/0 ||§Z-(t)||2dt§/0 | B () + B (t) + Eyiu(t)|[2dt, asT — o0, i=1,---,p (31)

AAISO7 A, B7 Cl, CQ, Dl, DQ, Hl’i7 Hgi, Hgi, Eli; Egi and Egi are constant matrices with ap-
propriate dimensions.

We assume the following:

(A1) (A, B,(,) is stabilizable and detectable.
Assumption A1 is obviously necessary and sufficient for the existence of a stabilizing

controller while assumption A2 is made for technical reason and does not cause lose of
generality.

Let a desired controller be of the following form:

bolt) = Auzo(t) + Buy(), 2.(0) =0 (32)
u(t) = chc(t)+Dcy(t) (33)

where z.(t) € R™ is the state, and A., B., C. and D, are constant matrices of appropriate
dimensions. The order of controller may be different from the order of plant.
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Similar to the analysis problem, we define the linear quadratic performance index [J; as
following:

A A EOT

x(t) x(t)
= [T e | R| €@ | (34)
° | () u(t)

where

R = [Cy Dy H,)'[C, D, Hy)
ctc, ctfp, ctH,
D¥fc, D¥D, DTYH,
HIC, HID, HIH,

(35)

In the above, Hs is defined in (8).

The robust LQ synthesis problem associated with the uncertain system (28)-(30) is as
follows: Find a controller of the form (32)-(33) such that the closed-loop system of the
uncertain system (28)-(30) with controller (32)-(33) is asymptotically stable and the per-
formance index J is bounded by

Ji < G(x),  G()=0 (36)

for all admissible uncertainties satisfying (31). Furthermore, the upper bound is mini-
mized.

Besides the short-hand notation in (8)-(11), we define:

H; = [H31"'H3p]5 (37)

- | A+ BD.C, BC,
A [ D B ] (38)
C =[C, +D,D.Cy D/C,J (39)

_ H,; + BD.Hj; _

Hyi = [ " e ] ; Hy = Hy; + DD Hy, (40)
Ey; = [E;i + E5,D.Cy E3C,l; Ey; = Eo; + E3;D.H; (41)
le[f{n...glp]; HQZ[HQI-..HQP] (42)
Ef:[Eﬂ...E%;,; EQT:[E%;E%;,] (43)

It is straightforward to verify that the closed-loop system of (28)-(30) together with con-
troller (32)-(33) is given by

B0 = As()+ Y g, 0=l off (14

) = Cot)+ Y. Hasi) (45)

~J



with
T T _
[ N6@Pd < [ 1Bun() + Bag o) Pdr, asT =00, i=1p (40
0 0

Applying theorem 2, the L() synthesis problem is solvable using the controller in (32)-(33)
if the following system is asymptotically stable and its H..-norm is less than 1:

i(t) = A@(t)+ HyJ V0(t) (47)

; c . HyJ 2 ]

{0 = | g, [o0+ | e ot (49
Furthermore, (47)-(48) above is the closed-loop system of the controller (32)-(33) together
with the auxiliary system defined below:

I(t) = A#(t) + HyJ %0 (t) + Bu(t) (49)

X C R HyJ—1/? R D
2(t) = 1/21 z(t) + 1/22 Ly | W() + 1/21 u(t)
JHEE, JeEyJ J 1 Es

y(t) = Cyi(t) + HzJ i (t) (51)
for some J > 0.
Given controller (32)-(33), let P be a closed-loop matrix of (47)-(48), i.e. P is such that
ATP+PA PH, CT ETJ
HI'P -J H} EYJ
cooH o1 0
JE, JE, 0 —J

As a simple consequence of theorem 2, we have the following result:

Theorem 3. Given the uncertain system (28)-(30), if for some J > 0 there ezists a
controller of the form (32)-(33) such that the closed-loop auziliary system of (49)-(51)
with the controller is stable and has Hy,-norm less than 1, then the robust L() synthesis
problem for system (28)-(50) is solvable with J, < Tk PZy.

Before proceeding further, we recall the following result:

Lemma 4. [6] Consider the following system:

(t) = Ax(t) + Biw(t) + Boul(t) (52)
2(t) = Ciz(t) + Dyw(t) + Diou(t) (53)
y(t) = CQSU(t) + D21w(t) (54)

satisfying assumptions (A1)-(A2). Let N (respectively Ng) be any matriz whose columns
form a basis of the null space of [BE DL)] (respectively [Co Day]). Then, there exists a

8



controller of the form (32)-(33) such that the closed-loop system has Hu, norm less than
1 if and only if there exist symmetric matrices R and S satisfying the following LMIs:

AR+ RAT RCT| By 1, .
T 1

[]\E)R ﬂ CiR —1 | Dy ]\63% < 0 (55)

BT DT -1 |t :

ATS+AS SB, | CT 1, .

T 1 1

l]\gs (I)] B'S -1 |DF, ]\és% < 0 (56)

Ch Dy | =1 ] -

R I]
IS > 0 (57)

Using lemma 4 and theorem 3, we obtain the following result:

Theorem 5. The following two conditions are equivalent:

(a) There exists a controller of the form (32)-(33) such that the closed-loop system of
(49)-(51) is asymptotically stable and has H-norm less than 1;

(b): Let Ny (respectively Ng) be any matriz whose columns form a basis of the null space
of [BY' DI ET] (respectively [Cy Hs]). There exist symmetric matrices R, S € R™"
such that the following LMIs hold:

AR+ RAT RCT  RET |H,J '
NE O CiR ~1 0 | HaJ P | [Ng]|O]
l 0 |7 EiR 0 =g B |0 (1] Y (58)
JYHT  JYHY JET| —J T |
ATS +SA SH, | CT ETJ ]
N0 HTS —J |H] EIJ | [ Ng|0]
l 0 |1 o Hy |1 o || o]r]~" (59)
JE,  JEy| 0 —J |
[]j HEL (60)

Proof. The proof is a direct application of lemma 4 to the auxiliary system (49)-(51).
We first note that the columns of the matrix

diag{Il, I, J '/} Ny (respectively diag{l, J'/?}N)
form a basis of the null space of [BY DI EI'J'Y?]] (vesp. [Cy HsJ~'/?]]). Then, it is

straightforward but tedious to verify that the LMI in (58) is the version of (55) for the
auxiliary system, but pre- and post-multiplied by the following matrix:

I| 0
0] 17



Similarly, the LMI in (59) is the version of (56) for the auxiliary system, pre- and post-
multiplied by the following matrix:

I| 0
0 | diag{z, J'/?}

Q.E.D.

In the state feedback case, we can similarly show that one of the LMIs is void and the
resulted LMI is fully convex in the variables (matrices). This point is clarified in the
following corollary:

Corollary 6. Given the uncertain system (28)-(30) with uncertainty satisfying IQCs (31).
The following two conditions are equivalent:

(a) There exists a controller of the following form
u(t) = K.x(t) (61)

such that the closed-loop system for the auxiliary system (49)-(51) is asymptotically stable
and has H.,-norm less than 1;

(b): Let N be any matriz whose columns form a basis of the null space of [BT DT FET].
There exist symmetric matrices R € R™", R > 0 and J > 0 such that the LMI (58)
holds.

Remark 2. Note that from [6], if the LMI problem in Theorem 5 is solvable, the closed-
loop matrix is given by
P l S N ]

NT

where N is to be chosen. In this situation, the robust LQ problem is solvable with
J1 < x}'Szy. This is again an EVP. As a special case, assuming Ezoxl = I and denoting
£ the mathematical expectation, we have J; < tr(S). Thus, an optimization can be set
up to minimize ¢r(S). In the state feedback case (Corollary 6), the above optimization
problem in terms of scaling constants .J is in fact convex.

4 Conclusion

This paper studies the robust LQ control problem for a class of linear systems with
uncertainty subject to integral quadratic constraints. We show that the solvability of a
LMI which is linear in matrix P and scaling parameters J will guarantee the solvability
of the robust LQ analysis problem.

For the robust LQ synthesis problem, we show that the solvability of two constrained
LMIs which are linear in matrix R and scaling parameters J and linear in matrix S and

10



the inverse of scaling parameters J respectively will guarantee the existence of the desired
dynamic output feedback controller. However, the two LMIs are not jointly linear in J,
therefore, iterative procedure must be employed to search the solution of the two LMIs.
For the case that a state feedback controller is desired, we show that one of the two
LMIs is void and we have a fully convex solution to the robust LQ synthesis problem.
Optimization of the performance bound has also been discussed.

The results reported in this paper are all sufficient due to the nature of the S-procedure.
Further research is encouraged to exploit the possibility of necessary and sufficient results.
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