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Some Properties of an Upper Bound for p

Gjerrit Meinsma, Yash Shrivastava, and Minyue Fu

Abstract—A convex upper bound of the mixed structured singular value

 is analyzed. The upper bound is based on a multiplier method. It is
~ simple, it can exploit low-rank properties, and it is shown to be less
conservative than the well-known (D, G)-scaling. A direct relationship
with (D, G)-scaling is given. The upper bound can be modified to one
that is continuous with an explicit Lipschitz constant.

I. INTRODUCTION

One of the engaging problems of robust control is to determine
whether or not a system remains stable and retains satisfactory
performance qualities under variations and uncertainties of some sort.
In an attempt to get a handle on the problem, Doyle [8] introduced
in 1982 the structured singular value. The definition of the structured
singular value, or u for short, is such that robust stability/robust
performance of the control problem is equivalent to x being less than
one. Originally ¢ was defined for problems where the performance
is measured by an Heo-norm and the uncertainties come in the
form of structured complex matrices, such as those due to neglected
dynamics. It was soon realized, however, that the definition of
could be extended to handle real parametric uncertainties as well.
This extension of u is known as the mixed-structured singular value
[91.

Unfortunately, in its full generality the test “y < 17" is NP-hard [5],
[17], and as such any attempt to develop polynomial-time algorithms
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work for special cases only, or, if they do work for the general case,
then they provide only sufficient conditions (see Young et al. [20] and
the survey papers by Packard and Doyle [16] and Barmish and Kang
[2]). The role of upper bounds of y is that they provide such sufficient
conditions. Of the computable upper bounds of y that have been
reported, the best at present that can handle the general i problem
are those by Fan et al. [9] and Fu and Barabanov [11].

In this paper we examine an upper bound of u based on what is
called the multiplier method. The idea of the multiplier method is
that nonsingularity of a family of matrices 7 is ensured if for some
matrix C' we have that CT + T*C* >0 for all T' € 7. Note that
the condition CT + T C™ > 0 is convex in the variable C. The idea
is not really new, although its application for the general y problem
was only recently realized by Fu and Barabanov [11]. The multiplier
approach is extremely simple and, as Fu and Barabanov showed,
it is readily translated using the S-procedure into linear matrix
inequalities (LMI’s) and generalized eigenvalue problems (GEVP’s).
LMTI’s and GEVP’s are nowadays efficient to solve (see Nesterov and
Nemirovsky [15] and Boyd ez al. [4]). The simplicity of the multiplier
method may give the impression that the upper bounds of p derived
from it are conservative. Interestingly, however, the best advocated
upper bound of i by Fan ez al. [9] can be seen as an example of the
multiplier method and turns out to be more conservative than—or,
at best, equal to—any of the upper bounds derived in [11] from the
multiplier method.

We collect in this paper some general properties of the multiplier
method and the upper bound of u it induces. Section II introduces the
notation and some well-established results. Section III discusses the
multiplier method. First, we show that the upper bound of Fan ez al.
[9] is more conservative than the general multiplier method. This fact
was realized already by Fu and Barabanov [11], but here we provide
an explicit relationship. In Section IV we show that many variations
of the multiplier method are equivalent. This result allows us to
exploit low-rank conditions to reduce the computational cost without
any conservatism. We briefly comment on the lack of continuity of x
and its upper bounds and how the multiplier method may be modified
to recover continuity. Owning to the simplicity of the method, we
obtain Lipschitz continuity with an explicit Lipschitz constant.

II. PRELIMINARIES

In this section we summarize material that we need later. The
mixed structured singular value is defined, and we briefly review
(D, G)-scaling and the GEVP.

The norm ||T']| of a matrix T is in this paper the spectral norm.
T is the complex conjugate transpose of 7' and the Hermitian part
He 1" of T' is defined as

HeT = %(T+T*).
Given a subset X of C"*™ we use Bx to denote the unit ball in X
Bx = {A € X:]|A|| < 1}.
Given X the mixed structured singular value of M, denoted by
px (M), is defined as the infimal value of o > 0 for which all elements
of the set I —(1/a) Bx M are nonsingular. Obviously px (M) depends

on the “structure” X. Invariably, the structures considered are of the
form

X =diag (RIt,,---,RIk,, ,Cl,,---,CL,, ,C/>f ...
Cfmcxfmo) D
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where m,, m., and mc¢ are the number of repeated real scalar
blocks, repeated complex scalar blocks, and full complex blocks,
respectively.

‘A. (D, @)-Scaling, LMI's, and GEVP’s

Let H? denote the set of ¢ X ¢ Hermitian matrices and denote its
subset of positive definite elements by P?. Given the structure of X
of (1), the sets Dx and Gx are defined as

Dx =diag (P**, -, PF=r P1 ... Plme PI; ...,
PIy,,..)

Gx =diag(Hk1,---,Hk’"”,Ullxll,"wOImcxlmCa
Opixtiss s Ofmg x fmg )

Note that for all A € X,D € Dx, and G € Gx we have that
DA = AD;D'?A = ADI/Z;AG = A"G = GA. Given M we
define ®,(D,G) as

®.(D,G) = M*DM + j(GM — M"G) — o’ D

This notation is a bit different from that of [9]. Fan er al. [9] showed
that px(M) < a if >0 and ®,(D,G) <0 for some D € Dx
and G € Ox. So, in particular the « that solves the constrained
minimization problem

minimize o«
subject to ®.(D,G)<0,a>0,D € Dx,G € Ox Q)

is an-upper bound of px(M). This minimum « is denoted as vx(M).
Minimization problem (2) is an example of a GEVP. A GEVP is a
minimization problem of the form

minimize a
aCR,zCRIXP

subject to  aB(z) — A(z)>0,B(z)>0,E(z)>0

where A(z), B(x), and E(z) are square symmetric matrices de-
pending affinely on the variable = € R?*?. For GEVP’s efficient
polynomial-time algorithms exist [15], [4], [12]). A linear matrix
inequality (LMI) in the variable « € R?*? is an inequality E(z) > 0,
where E(z) is a square symmetric matrix affine in .

III. THE MULTIPLIER METHOD

In this section we examine an upper bound of px that relies on
the multiplier method as developed by Fu and Barabanov [11]. In
particular we provide a connection with (D, G)-scaling. At the basis
of the multiplier method lies the trivial observation that

a square matrix 7" is nonsingular if there is a square matrix C'

such that HeCT > 0.
This is easy to see: If T' is singular with Tv = 0,v # 0 we
get for any C that v*(CT + T*C*)v = 0, contradicting that
CT +T*C* = 2HeCT >0. The matrix C is called multiplier
because of its links with the Popov multiplier, although it is not
quite the same as that of Popov [18]. Popov-style multipliers, in
the modern setting, appear in the work of Safonov and others—see
[7] and [14]—and they are in a way equivalent to (D, G)-scaling
(see [11). The approach we use here can be traced back to an idea
by Brockett and Willems [6] from 1965. The following result is
immediate.

Theorem IL1: px(M) < « for an n x n matrix M if there is a
single multiplier C' € C**™ such that

Hec(f,, - éBxM> > 0. 3)
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By (3) it is meant that all elements of the set C(I, — (l/a)BxM)
have positive definite Hermitian part.

If C satisfies (3) we say that C is a feasible multiplier for the set
I, — (1/a)BxM. The infimal « for which such a feasible multiplier
C can be found is thus an upper bound of px (M ). For later reference
we call this upper bound fx(M)

fx(M):= inf {a>0: 3C s.t. HeC(In - %;BXM) >0}. )

Even though (3) is convex in C, computation of fix is generally not
possible due to the infinite family (1/a)Bx. There is an exception.
If the structure X has real components only, that is

X = diag (RIy,, -+, Rlx,, ) (5)

then by convexity (3) holds for multiplier C' iff the finitely many
LMI’s

He C(I, — AM)> OVA = édiag (&L, L, ) (6)

are satisfied. Minimizing o > 0 over all C' subject to (6) is a GEVP.
Thus it seems that computation of jix is well suited for the real case.
This is in contrast with (D, G)-scaling which is primarily useful for
the nonreal case. In any case, real or not, the following holds.
Theorem II1.2: For every structure X and matrix M we have

px (M) < x(M) < vx(M).

In particular, if ®o(D,G) <0 with D € Dx,G € Gx, then C' =
a®’D + jM*@ satisfies (3).

Proof: Let C = oD + jM™G. It is readily venﬁed that for
every A € X we have

2He C(I — AM)
=C(I—AM)+ (I - AM)*C*
= —®,(D,G) + M*DY*(I — o*A*"A)D'*M
+a’(D'? — ADVAM) (D' — ADVPM). (D)

Therefore He C(I — AM)>0 for all A € (1/a)Bx if
&,(D,G)<0.

In (7) we used the fact that for every A € X we have D'/2A =
AD'? and GA = A*G. n

So (D, G)-scaling can be interpreted as being a restrictive special
case of the multiplier method. On the other hand, while vx is efficient
to compute, computation of fix is generally possible only for real-
valued structures (5), and even then care has to be taken. since
the computational cost grows exponentially with the number of real
blocks m,. In [11] it is explained how to combine the advantages of
the multiplier method with the advantages of (D, G)-scaling. Loosely
speaking, the idea is to apply the multiplier method on the first,
say, five real blocks and to apply (D, G)-scaling on the remaining
real blocks (and complex blocks). As shown in [11] these combined
computable upper bounds of ux are less conservative than wx. It
remains to be seen how these upper bounds compare to (D,G)-
scaling in combination with a gridding of the real parameter space
which is an alternative method to reduce conservatism of the upper
bound vx. We end this section with an example that shows fix is
generally strictly less than vx.

Example II1.3: We derive in this example the values of
pux(M),vx(M), and fx(m) for the case that

R 0 01
X—[O IR} and M = L 0]
For all A = diag (61, 62) € X the determinant det (I; — AM) equals
1 — j6162. This is nonzero irrespective of the values of 6; € R and
62 € R. Hence px(M) = 0.



1328

For this example Dx is the set of diagonal positive definite
matrices, and Ox is the set of real diagonal matrices. With D € Dy
and G € Ox written as D = diag (di,d2) and G = diag (g1, g2)
we get that

®o(D,G) =M*DM + j(GM ~ M*G) — oD

doy — Ctzdl Jjor — g2
= . . 8
—jg1— g2 di —a’dy ®

Based on the diagonal elements of (8) it can be seen that
®,(D,G) <0 for some D € Dx only if a® > 1. On the other hand,
(8) is negative definite for every o® > 1 if we choose d; = ds = 1
and g1 = g2 = 0. Hence vx(M) = 1.

For C = Iy and A = diag (61,62) € X we have that

1 (Géz = 81)/2]

He C(I, — AM) = (=362 — 62)/2 .

This is positive definite for all real §; satisfying |8;| < v/2. Hence
fix(M) < 1/+/2. A further technical analysis shows that aix(M) is
in fact equal to 1/+/2. So, for this example none of the bounds are
the same: 0 = px(M) < ix(M) = 1/V/2 <vx(M) = 1.

IV. EQUIVALENT MULTIPLIERS

The multiplier method has many variations. For example, instead
of trying to find a multiplier C' such that (3) holds, it might be perhaps
advantageous to try to find a scalar ¢ for which

Hecdet (I — AM)>0 forall A € éBx. ©)

If such a c exists then again px (M) < . In this section we discuss a
few of these variations. We show that certain variations are equivalent
in. that they induce the same upper bound of uyx. The class of
equivalent multiplier methods includes one that exploits low-rank
properties of M, but it does not include the one in (9).

Numerous robust stability problems require computation of px (M)
in which the matrix M has low rank. In fact, M is often constructed
from tall matrices P and Q as

with P and ) readily given by the problem at hand.
Example IV.1: Let {Ag,- -+, Am} be a collection of ¢ X ¢ matri-
ces, and let A be any ¢ X ¢ matrix of the form

A=Ag+6A1 4+ F+b6ndm, -1<6<1.

It is well known that the uncertain system # = Az is asymptotically

stable for all such matrices A iff Aq has all its eigenvalues in the

open left-half plane and for all frequencies w € R we have that
I, — Z(SiAi (jwly — Ao)~" is nonsingular V|5;| < 1.

i=1

(10$)

Condition (10) is a low-rank px problem. To see this define A =
diag (6114, -+, 6m1;) and define the tall matrices P and Q.. as

I, A

B Qu =

P= (Jwly ~ Ag)™ "

This way the matrix I, — 2% 8 A; (jwl, — 4o)~" of (10) can be
written as I, — P*AQ.. By the determinant rule det (I — AB) =
det (I — BA) it now follows that (10) holds for all frequencies iff
with respect to structure X = diag (RI,, - -, RI,) we have

MX(QWP*) <1
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for all frequencies w € R. The matrix M := Q. P* is ¢gm X ¢gm but
only has rank gq. :
In general, robust nonsingularity of the n x n set

1 £
I, — —BxQP
o
is the same as robust nonsingularity of the “smaller” ¢ x ¢ set
I, - P* leQ.
o

The obvious question is whether or not the multiplier method applied
to the smaller I, — P*(1/a) Bx@ provides a more conservative upper
bound of px(QP*) than ax(QP*). They are equivalent.

Theorem IV.2: Let M = QP*. The following four upper bounds
of ux(M) are the same:

fix(M):= inf {a > 0:3Cs.t. HeC(In - éBxM> > o}
fixa (P, Q)= inf {a > 0:3C; 5.4, He Ch <Iq —p* ésw) > 0}
fx,3(P,Q):= inf {a >0:3C5s.t. He <Iq - P éBxQ)Cg > 0}

fix,a(M):= inf {a >0:3C,s.t. He <In - -i—BxM) Cy> 0}.

Proof: We prove in four steps that jix < fix2 = fix;3 < fix,a =
fix which shows they are all equal.
(fx < fix,2): Suppose o > fix,2 and that Cs satisfies He Co(I, —
P*(1/a)Bx@Q) > 0. Consider C:= PCoP* + ¢eEE* with E and
yet to be determined. Then

C(I, — AM) =(PCyP" + eEE™)(I, — AQP™)
_ Co(ly— P*AQ) 0 ][P*
=[P £ [ —eE"AQ el |[|E"|
Therefore, its Hermitian part equals
He Cs(I, — P*AQ) —gQ*A*E

HeC(l, - AM)=[P E
o )=lr 5 ~iB'AQ eI

13

For any E for which [P E] has full row rank, there is a small
enough ¢ >0 such that (11) is >0 for all A € (1/a)Bx. Hence
fx < . Since this can be done for any a > ix2 we have that
ax 2 ix2.

(fx,2 = px,3): Take Cs = C5 ™,

(fx3 > fix,a): Suppose o> fix.s and that Cy satisfies He
(In = (1/a)BxM)Cy > 0. Consider C3:=P*C4P + ¢E*E with
E and e yet to be determined. Then

(I; - P*AQ)Cs = (I, — P*AQ)(P*C4P + E*E)

(I, — ng)@ —aAE?E*J [ﬂ

an

— [P* E*] {
Therefore, its Hermitian part equals
He (I, — AM)Cy ~§AQE*}

He(I, — P*AQ)C3=[P* E*
(I, - P*AQ)Cs=[P" ] S S

P
2l
For any E for which [P* E*] has full row rank there is a small
enough >0 such that (12) is >0 for all A € (1/a)Bx. Hence

fx,3 <o Since this can be done for any o> ux+ we have that
fx3 < fixa.

(12
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(fix,4a = fix): Take C = C; ™. ]

The equivalence of jix and jix.4 shows that flipping the multiplier
to the other side of the nonsingularity set has no effect on the upper
bound it induces. A further variation of the multiplier method which
is easily verified is that ix(QR™ P*) equals

inf {a > 0: 3C5 such that He Cs (R - P leQ> > 0}.
@

Example 1V.3: Consider Example IV.1. For a fixed frequency w,
the upper bound fjix(Q.P*)—which involves a gm x gm multi-
plier—is the same as the infimal o >0 for which a C5 € C%*¢
exists such that

HeCs l:(ijq — Ao) — Z&,A,‘ >0 for all §; € {__1_, l]
o

=1

The equivalence of the various multiplier upper bounds generally
breaks down if I,, — AM or I, — P*AQ is replaced with one that no
longer depends affinely on A. For example, we know that I, — AM
is nonsingular iff det (I, — AM) is nonzero. However, the existence
of a multiplier C for I, — AM satisfying (3) does not necessarily
imply that a scalar ¢ exists such that :

Hecdet (I— inM) > 0. (13)

As an example, suppose we have

_[R O _[25 0
X = [0 R] and M = [0 2],].
Then pux(M) = fx(M) = 0 because for any o >0 we have He
(I — (1/a)BxM) = {Iz} > 0. However, for say, « = 1, we cannot
find a ¢ that satisfies (13) because for the four A’s
+1 0 1
A= {0 :i:l] € 3B

The determinant det (I — AM) = (1£25)(1425) takes the values
—3 4+ 45 and 5 (twice), and these do not lie in one half-space
{s:0 + /2> args>8 — w/2}. '

It is an important asset of the multiplier method that it can exploit
the low rank properties of M. The reduction in size when going from
the n X n matrix I, — AM to the equivalent ¢ X ¢ matrix I, — P*AQ
is most extreme if M = QP* has rank one.

Lemma IV.4: jx(M) = px(M) if M has rank one.

Proof: Let P and () be column vectors such that M =
QP*. By Theorem IV.2 we have that (M) = fjix2(P, Q). Sup-
pose a > px(M). Then by definition of px all members of 1 ~
P*((1/a)Bx)Q are nonzero. Since 1 ~ P*((1/a)Bx)Q is convex
it must, therefore, lic in some half-space {s:6 — 7/2 < args <8 +
m/2}. Then

Hee 7* (1 - P*éBxQ) =Ree™?’ (1 - P*éBXQ)> 0

so that fix2(P, Q)< a. Since this holds for any a > ux(M), the
result follows. ]
Young [19] showed that also (D, G)-scaling is exact for rank one
matrices M. The multiplier method is also exact if X = C**" in
which case we can simply take the multiplier to be the identity.

V. CONTINUITY

In typical robust stability applications the nonsingularity property
that needs to be tested is

I - éBxH(jw) is nonsingular for allw € RUoo?  (14)
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In other words, check at each frequency w whether or not
px(H(jw)) < . This is usually impossible, and one has to rely
on a finite frequency grid. The problem, however, is that px, fix,
and vx are discontinuous which greatly impairs the use of gridding.

Example V.1: Suppose X = R. If z is a real, then px(x) = |z|. px
is discontinuous because for every (arbitrarily small) ¥ # 0 we have
that ux(z+jy) = 0. Since ux = fix = vx for this case (See Lemma
IV.4), jix and vx also are discontinuous.

Generally px(H (jw)) and its upper bounds are discontinuous at
some isolated frequencies only. An even more severe discontinuity
problem that can occur is that the infimal o for which (14) holds true
may be discontinuous as a function of H (measured in, say, the Hoo
norm). This problem was first demonstrated in [10] and subsequently
rigorously studied in [3]. The multiplier method upper bound can
be adjusted—at the expense of worsening the bound—to one that is
continuous.

Lemma V.2: Let n be some (small) positive number <1. If the
multiplier C' in (4) is restricted to the convex set

llejl <1

and HeC >nl (15)

then C has a condition number less than 1/7 and jix is continuous

N . 1 )
lix(M + E) — ix(M)]| < EIIEII- (16)

The proof is trivial. Note that the condition ||C|| < 1 alone has
no effect on the upper bound fix(M) since the multiplier may be
scaled to be like that. Second, note that any feasible muitiplier C'
is nonsingular and satisfies He C > 0. However, as the bound «
approaches its optimal value jix (DM ), its associated feasible multiplier
C may become ill-conditioned in the sense that He C approaches a
singular matrix. An advantage of the continuity condition (16) over
that of Lee and Tits [13] is that (16) is a Lipschitz continuity condition
with known Lipschitz constant 1/7.

Example V.3: Suppose the multiplier C is restricted to (15) for
some 0 <7 < 1. For X = R it may be verified that jix(z + jy) =
max {0, |z] — |y|(+/1 - n2/n)} (cf. Example V.1.).

The LMI (15) is easily incorporated in the convex upper bounds
of Fan et al. [9] and Fu and Barabanov {11], as all of them generate
a feasible multiplier C. (Condition (15) is also an LMI in (D, G) if
we use C = oD + jM*G.)
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Design of Transaction Management Protocols

P. Kozdk and W. M. Wonham

Abstract— The paper shows how transaction management protocols
can be designed using discrete-event system control theory. It outlines
designs for some well-known protocols: serialization graph testing, two-
phase locking, and timestamp ordering. These protocols can be obtained
as solutions (centralized, fully decentralized, or maximal decentralized)
of standard control problems. The results serve to unify the problems
considered and suggest the possibility of computer-aided design.

I. INTRODUCTION

A transaction (database) system has three main components: a
set of data items, transactions (users) acting on these data items,
and a manager controlling access of the transactions to the data.
The manager’s function includes maintaining data consistency, max-
imizing throughput, minimizing waiting time, and failure recovery.
Transaction systems are discrete-event systems (DES) [1], so the tools
of DES control theory [2]-[5] can be applied [1].

This paper discusses the specialized task of concurrency control
[6], [7] dealing with data consistency and shows how the man-
agers can be designed as DES controllers. Section II formulates the
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problem. Section III presents a centralized solution known as the
serialization graph testing protocol. On imposing additional require-
ments—e.g., decentralization—different solutions can be obtained
(Section IV). The locking and timestamp ordering protocols can be
found as fully decentralized solutions [S] of a supervisory control
problem. Optimistic protocols are discussed in Section V. Section VI
draws conclusions.

The problem is formulated within the supervisory control frame-
work of the DES [2], [4] and with reference to the database back-
ground in [6], [7], and [1]. For the first time in [1], the concurrency
problem was formulated within the dynamic system control frame-
work. The main differences between [1] and the present paper are: the
dynamic mode of information is modeled directly by the transaction
model,! different sets of controllable events are examined, and some -
protocols are obtained as decentralized controllers in contrast with
the centralized controller of [1]. Limited lookahead policies [3] are
also considered.

II. PROBLEM FORMULATION

Consider a set of data items D and set of transactions 7. A
transaction ¢ € 7 can execute the following operations: R{ (read
data item d € D), W¢ (write into data item d € D), C; (commit—the
transaction has successfully terminated and all changes of data
items by the transaction are made permanent), and A; (abort—the
transaction has terminated, but all changes it made in data items
are now congidered incorrect and are canceled. The transaction can
restart again.). For each ¢ € 7 let

T = {Ci, A} U{R{|d € DYU{W{|d € D}.

The transaction ¢ is modeled as the language L; = (Z,\{C;})*Cy,
where \ denotes set difference and (Z:\{C:})* the set of finite
sequences over ¥;\{C;}. The model reflects the fact’ that the
manager must expect any sequence of operations ending with C;.

Let ¥ = Uier ¥¢. The transaction system is the language
L C T, defined as the shuffle product of the L; (¢t € 7). The
strings of L are called schedules. A serial schedule is a schedule
without the interleaving of operations of distinct transactions. The
main assumption is that each transaction maintains data consistency
if it acts alone and if the last executed operation of this transaction
is “‘commit.”

The consistency criterion for schedules [6] and [7] is formulated
using the concept of a serialization graph. Say that two operations
of a schedule form a conflicting pair if they are executed by distinct
transactions which are committed in the schedule, they act on the
same data item, and at least one of these operations is “write.” The
serialization graph (SG) of a schedule is a labeled directed graph
which has the names of committed transactions as nodes and whose
edges are defined by the conflicting pairs of the schedule and labeled
by the corresponding data items. For each conflicting pair there is
a directed edge between transaction names, starting at whichever
transaction of the pair occurred earlier.

A schedule is serializable® if there are no cycles in its SG. For
consistency it is additionally required: “The results of any committed

I'The performance analysis of different managers of both static and dy-
namic mode of information presented in [1] uses the static-mode-information
transaction model.

2This is referred to as the dynamic mode of information. For the static
mode of information, L+ is singleton.

3This property is sometimes called also “conflict serializable.”
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