SYSTEMS
& CONTROL
LETTERS

ELSEVIER Systems & Control Letters 31 (1997) 165-171

Piecewise Lyapunov functions for robust stability of linear
time-varying systems’
Lin Xie?, Serge Shishkin®, Minyue Fu®*

2 Department of Electrical and Computer Engineering, University of Newcastle, Newcastle, N.S.W. 2308 Australia
b Institute for Informatics and Automatization, Russian Academy of Science, 39, 14 Line, V.O., St.-Petersburg, 199178, Russia

Received 25 June 1995; received in revised form 18 May 1996 and 12 February 1997; accepted 10 March 1997

Abstract

In this paper, we investigate the use of two-term piecewise quadratic Lyapunov functions for robust stability of linear
time-varying systems. By using the so-called S-procedure and a special variable reduction method, we provide numerically
efficient conditions for the robust asymptotic stability of the linear time-varying systems involving the convex combinations
of two matrices. An example is included to demonstrate the usefulness of our results. © 1997 Elsevier Science B.V.
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1. Introduction

The quadratic stability approach is popularly used for robust stability analysis of time-varying uncertain
systems. This approach, however, may lead to very conservative results. Alternatively, non-quadratic Lyapunov
functions have been used to improve the estimate of robust stability (see [2, 1, 7-10]). The difficulty with
non-quadratic Lyapunov functions is that the resulting optimization problem is typically non-convex. In this
short paper, we investigate the use of two-term piecewise Lyapunov functions on time-varying linear systems
involving the convex combination of two matrices. These Lyapunov functions are either the maximum or the
minimum of two quadratic terms. By using the so-called S-procedure [11] and a variable reduction technique,
we obtain necessary and sufficient conditions for establishing robust asymptotic stability of the uncertain
system using such a piecewise Lyapunov function. The resulting optimization problem involves a set of linear
matrix inequalities (LMIs) with two scaling parameters which can be numerically searched.

We show via an example that good improvement on the estimate of robust stability margin can be obtained
by using these piecewise Lyapunov functions when compared with the quadratic stability technique.

2. Problem formulation
Consider the linear time-varying system
x = A(t)x, A(t)e o = Co{4y,42}, 2.1)
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where Co{4,,4,} stands for the convex hull of 4; and 4,. Our aim is to produce a test which is less
conservative than quadratic stability result with reasonable computational cost. In particular, we use two kinds
of piecewise Lyapunov functions as follows:

V(x) = max{x'Pix,x'Px}, P, >0, P,>0 (2.2)
and
V(x) = min{x'P x,x'P,x}, P,>0, ,>0. (2.3)
To check whether (2.2) proves the stability of (2.1) or not, we only need to check that
dV(x(¢))/dt <0 (2.4)

for all x(¢) # 0 along the trajectory of system (2.1). Note that the derivative above is given by

(A (P, + PLA())x(t hen x'Px = x'P; x,
AV (e(t))de = x/( I /( YP1 + PiA(#))x(¢t) when x/ 1 X x, 2 X @.5)
xX'()( A ()P, + P,A(t))x(t) when x'Pox 2 x'Pyx.
For the Lyapunov function in (2.3), the derivative in (2.5) should be replaced with
(WA ()P, + PLAGR))x(¢ h 'Pix < x'Pyx,
AV (x())/dr = x/( " /( YPi + PLA(t))x(¢) when x, 1X x: 2 X 2.6)
x'()(A' ()P, + P,A(t))x(t) when x'Pax < x'Ppx.

In order to derive conditions for robust stability of (2.1) with the Lyapunov function (2.2) or (2.3), we
need the lemma below.

Lemma 2.1 (S-procedure lemma [11]). Let Fo(x) and Fi(x) be two arbitrary quadratic forms over R". Then
Fo(x) <0 for all x e R" satisfying F1(x)<0 if and only if there exist 1=0 such that

Fo(x) — tF1(x)<0, VxeR".

From the lemma above, the robust stability conditions (2.2)-(2.4) can be rewritten as in the following
lemma.

Lemma 2.2 (Boyd [3]). System (2.1) is robustly stable for all A(t) € o/ with the Lyapunov function (2.2)
if and only if there exist solutions to the following set of inequalities:

A\P + P A — iy(P, — P,) <0, @.7)
ALP 4+ Pids — ia(Py — P) <0, (2.8)
APy + Py Ay + J3(Py — P) <0, 2.9)
A\ Py + Py Ay + Ja(Py — P1) <0, (2.10)
P>0 P>0, (2.11)
L20, i20, A3>0, is>0. | (2.12)

Similarly, we can have a result for the Lyapunov function in (2.3).

Lemma 2.3. System (2.1) is robustly stable for all A(t)€ o/ with the Lyapunov function (2.3) if and only
if there exist solutions to the following set of inequalities:

A'IPI + PiAy+ (P, — P) <0, (2.13)
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AP+ P14y + (P, — P) <0, (2.14)
AP+ P4 — I3(P,— P) <0, (2.15)
ASP + Py Ay — ia(Py — P) <0, (2.16)
P >0, P>0, 2.17)
=0, 420, 1320, i;=0. (2.18)

Remark 2.1. The use of Lyapunov functions (2.2)—(2.3) and the S-procedure is not new [5, 3]. In fact, it
is shown [7, 8] that the system (2.1) is robustly asymptotically stable if and only if there exists a piecewise
quadratic Lyapunov function of the following form:

V(x)= max {x'Px}, P;>0,i=1,...,p
I<i<p

for some p. But the stumbling block is that the subsequent optimization problem is non-convex. This is true
even for (2.7)—(2.12) or (2.13)—(2.18). If we fix P; and P, then (2.7)—(2.12) and (2.13)—(2.18) are convex
problems. This is also the case if we fix 4;, i=1,...,4 (refer to [3] for example). However, (2.7)-(2.12)
and (2.13)—(2.18) are not jointly convex in P;,P> and 4.

3. Main result

In this section, we are going to provide a variable reduction procedure which can reduce the number of
variables 4; in (2.7)—(2.18) from four to two. Also, the range of the new variables will be set to [0, 1].
The resulting problem involves a set of matrix inequalities which are linear in all variables except for two.
Numerical searching of these two variables becomes a moderate problem. In particular, we can use a simple
gridding scheme to find an estimate of them. The estimate can then be refined by using either further gridding
or local searching methods such as Newton’s method.

Theorem 3.1. The system (2.1) is robustly stable with the Lyapunov function (2.2) if and only if there exist
81,92 €[0,1] such that the following set of LMIs have a solution for Hy and H:
A\H, + Hi4, <0, ASHy + HyAy <0,

(1 = 8;)(A\Hy + HaAy) + 82(Hy — Hy) <0,
(1 — 51)(A12H1 +H1A2) — 61(1‘12 —Hl) <0,

O<H <I, 0<H,<lI

(3.19)

If this is the case, then V(x)= max{x'Hx,x'Hyx} is also a valid Lyapunov function for establishing the
robust asymptotic stability of the system (2.1).

Theorem 3.2. The system (2.1) is robustly stable with the Lyapunov function (2.3) if and only if there exist
81,01 €[0, 1] such that the following set of LMIs have a solution for H\ and H;:

A’1Hl + H14, <0, Al2H2+H2A2<0,

(1 - 52)(A§H2 + HyAy) — 52(H2 — H]) <0,

(1 — 81)(Ay Hy + Hi 42) + 01(H, — H1) <0,

O0<H <, 0<H<I

(3.20)

If this is the case, then V(x)= min{x'H,x,x'H,x} is also a valid Lyapunov function for establishing the
robust asymptotic stability of the system (2.1).
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Remark 3.1. To see the improvement given by (3.19) and (3.20) in comparison with (2.7)—(2.12) and
(2.13)—(2.18), we look at the gridding method for finding ; and 4;. If the number of grid points for each
variable is N, then N2 grid points are required for (§;,d,) while N* points are needed for (4i,...,44). For
N =10, the former is 100 while the latter is 10 000!

Proof of Theorem 3.1 (Necessity). Without loss of generality, we assume that A3 # Ajds. If dpds = A, Ay,
we can perturb one of these parameters slightly without violating (2.7)—(2.12). Define the transformation

Hi=wm(h P+ 43P), Hy = (Mo P2 + 24 Py), (3.21)
where pu; =4y + A4 and up = A; + 23. Then (2.7)—(2.12) lead to the following:

H, >0, H, >0, (3.22)
A H, + HiAy = i 23(41P + P4 — WPy — P)) + i (41Py + Py Ay + A3(P — P1)) <0, (3.23)
AyHy + Hy Ay = ppia(A3 Py + Pidz — Jo(Py — P1)) + 12 /a(45Ps + Py Ay + Aa(Pr — Pr)) <0, (3.24)

A\Hy + HyAy + po(H> — Hy)
= 0 is(A1P1 + PlAy — M(Py — P)) + 0 7(4A1P + P4y + A3(Py — P)) <0, (3.25)

AyHy + HiAy — i (Hy — Hy)
= [113.3(‘4;1:’1 + Pld; — A(P, — P)) + ,u1/{1(A;P2 + P Ay + A4(P, — P)) <. (3.26)

Now, introducing the variable substitution

_ 51 - 62
u1_1—519 .u2"1_52’

we obtain (3.19). Note that the constraints A; </ and H, </ are harmless because we can always rescale
Hy and H, to satisfy them.

(Sufficiency): Assume that (3.19) holds. If we set P\=Hy, L,=H>, A =44=0, 1,=061/(1 —8;) and
A3 =82/(1 — 8,), then we find a solution to the system (2.7)—(2.12). O

The proof for Theorem 3.2 is very similar and therefore omitted.

4. Extension to discrete-time systems

The results in Theorems 3.1 and 3.2 are readily extendible to the discrete-time case. More specifically, we
consider the following discrete-time system:

x(k+ 1) = A(k)x(k),  A(k)€ o = Co{dy, 45}. (4.27)

The discrete-time counterpart of Theorems 3.1 and 3.2 is given below.

Theorem 4.1. The system (4.27) is robustly stable with the Lyapunov function (2.2) if and only if there
exist 81,0, €[0,1] such that the following set of LMIs have a solution for H, and H,:

AngAl - H; <0, A£H2A2 — H; <0,
(1 — 82)(A 1 Ha Ay — Hy) + 62(H, — Hy) <0, 428)
(1 —0))(4yHAy — Hy) — 61(Hy, — H)) <0,

O<H <Il, O0<H<lI
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If this is the case, then V(x)= max{x'Hx,x'Hyx} is also a valid Lyapunov function for establishing the
robust asymptotic stability of the system (4.27).

Theorem 4.2. The system (4.27) is robustly stable with the Lyapunov function (2.3) if and only if there
exist 81,8, € [0, 1] such that the following set of LMIs have a solution for Hy and H,:
A'lHlAl - H; <0, A’2H2A2 — H; <0,
(1 — 6 (A\Ha A\ — Hy) — 6,(H, — Hy) <0,
(1 = 6)(A3H Ay — H)) + 01(H, — Hy) <0,
O0<H <1, 0<H,<I.

(4.29)

If this is the case, then V(x)= min{x'H x,x' Hyx} is also a valid Lyapunov function for establishing the
robust asymptotic stability of the system (4.27).

5. Numerical example

In this section, we shall test our results on an example which has been used in [12]. Two tests will be
carried out to show how the Lyapunov functions (2.2) and (2.3) can be used to obtain better estimation of
robust stability margins.

Example. Consider the following system:
X1 = X2, Xy = —2x; —x2 —u(t)xy, 0<u(t) < k, (530)

where u(?) is a time-varying uncertain parameter and & is its bound. The goal is to find the largest & for
which the system still remains robustly asymptotically stable. This system is found to be quadratically stable
for £ <3.828 only (£<3.82 in [12]) and admit a fixed Lyapunov function x’Px, where

pP= 2584972 32.9855
T\ 329855 66.0536 /)

In order to estimate the robust stability margin kn.x, we use a bisection method. That is, we start with
some initial k¢ and k; as lower and upper bounds for k.,x, respectively, and then apply bisection to improve
the bounds until their gap is sufficiently small.

Test one: Now, we apply Theorems 3.1 and 3.2 to (5.30). We simply use a gridding method to search
for 6, and J;. With the grid size equal to 0.1, we find that (5.30) is robustly asymptotically stable with the
Lyapunov function (2.2) for £ <4.7 and the Lyapunov function is given by

/07685 0.1326 /(08199 00690 531
max1¥ 1 0.1326 01923 /% * \ 0.0690 0.1795 . :

The corresponding parameters are §; = 0.9, J, = 0.8, respectively. Also, (5.30) is robustly asymptotically stable
for k£ <4.4 with the Lyapunov function

., /07344 0.0737 , (08252 01155 5:32)
MY 00737 0.1963 /7 * \0.1155 0.1772 ’ :

corresponding to ¢; =0.8 and d, =0.8.
Test two: To further improve the robust stability margin, we use the following nonlinear transformation
technique introduced in [4]:

= (2)(552) - (BBt g, Snmpmze G
i=1

D p2 Pp
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where the integer p is fixed, taking the value of 2,3,... and / is the index of the transformed state corre-
sponding to a set {p,..., p,} satisfying the constraints in (5.33). The transformed system can be expressed
as

zlPl — A[p]x“’] (5.34)

which is ("+';_')-dimensional. In our example, we use the transformation

yi=xt, ym=xx, =X (5.35)
as done in [12], i.e. p=2. This transformation changes (5.30) into

W= m=E=2n-ynty—uln,

Jy=—4ys = 2y3 — (s, O <u(t) <k (5.36)

Note that (5.36) is linear in u(¢). It is well known that [4] the null solution of the system (5.30) is stable
(asymptotically stable) if and only if the null solution of the system (5.36) is stable (asymptotically stable).
Moreover, if all solutions of (5.30) are bounded by |x(¢)] < Me~* then all solutions of (5.36) are bounded by
|y(£)] < Mie=P#. The stability of the transformed system is usually established using a quadratic Lyapunov
function which leads to a 2p-order Lyapunov function for the original system.

The system (5.36) is found to be quadratically stable for only k¥ <5.47 [12]. A better estimate £<5.73 is
also obtained by adding the quadratic constraint y,y; = y3. However, by applying the Lyapunov functions
(2.2) and Theorem 3.1 to (5.36), we have found that (5.36) is robustly asymptotically stable for £ <5.8 and
admits a Lyapunov function

0.8454 0.1246 0.0568 0.8098  0.1123 —0.0077
max {y' <0.1246 0.3679 0.0627) »y ( 0.1123  0.4552  0.0530 ) y}
0.0568 0.0627 0.0381 —0.0077  0.0530  0.0381

= max{0.8454x] 4+ 0.2492x}x; + 0.4815x3x3 4 0.1254xx3 + 0.0381x3,

0.8098x" + 0.2246x3x; + 0.4398x?x% + 0.1060x,x3 + 0.0381x3} (5.37)
1 1 142

with §; =0.9, 6, =0.6.
Similarly, the use of (2.3) and Theorem 3.2 leads to £ <5.8 with the following Lyapunov function:

0.7911 0.1106 0.0111 0.8393 0.1638 0.0232
min {y’ (0.1106 0.4285 0.0568) Yy (0.1638 0.4417 0.0575) y}
0.0111 0.0568 0.0414 0.0232  0.0575 0.0393

= min{0.7911x} + 0.2212x}x; + 0.4507x%x% + 0.1136x,x3 + 0.0414x3,

0.8393x% + 0.3276x3x; + 0.4881x%x3 + 0.1150x,x3 + 0.0393x3} (5.38)

with 6, =0.8, 6, =0.8.
All the above computation is done using the LMI Control Toolbox [6]. The grid size for §; and 6, is 0.1.
If we use the grid size 0.05, we can obtain the result k=59 and £ =5.8 for (2.2) and (2.3), respectively.

Remark 5.1. Further improvement can also be achieved by introducing the quadratic constraint

¥i=yn (5.39)

as is done in [12]. This constraint is evident from the transformation (5.35). By using the S-procedure on this
constraint, we can obtain k¥ =6.2 and k=359 for (2.2) and (2.3), respectively. To explain how this is done
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for (2.2), we rewrite the constraint (5.39) as

0 10
yOoy=y |1 -2 0]y=0. (5.40)
0 00

Then, (2.2) is modified by adding a term 7;Q to the left-hand side of each LMI, where t; is a real scalar
variable, different for each LMI. Using the S-procedure, a sufficient condition for robust stability of (5.36) is
that this modified set of LMIs has a feasible solution. Although this is a sufficient condition, it is a better
(weaker) condition than ignoring (5.40) because 7; are non-zero in general. The increase in computational
complexity is very marginal because the resulting LMIs are linear in 7;. The modification for (2.3) is very
similar.

6. Conclusions

In this paper, we have investigated the use of piecewise Lyapunov functions for providing better estimation
of robust stability. The Lyapunov functions we used are in the form (2.2) and (2.3). We have proposed
necessary and sufficient conditions for robust stability of convex combinations of two matrices. The key
contribution of the paper is a variable reduction technique which allows us to gain some computational
efficiency. We show through an example that our method can produce better estimation than existing methods.
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