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Abstract In this paper, we investigate the use of
two-term piecewise quadratic Lyapunov functions for ro-
bust stability of linear time-varying systems. By using
the so-called S-procedure and a special variable reduction
method, we provide numerically efficient conditions for
the robust asymptotic stability of the linear time-varying
systems involving the convex combinations of two matri-
ces. An example is included to demonstrate the usefulness
of our results.
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1 Introduction

he quadratic stability approach is popularly used for ro-
bust stability analysis of time-varying uncertain systems.
This approach, however, may lead to very conservative
results. Alternatively, non-quadratic Lyapunov functions
have been used to improve the estimate of robust stability
(see [1]). The general difficulty with non-quadratic Lya-
punov functions is that the resulting optimization prob-
lem is non-convex. In this short paper, we investigate the
use of two-term piecewise Lyapunov functions on time-
varying linear systems involving the convex combination
of two matrices. These Lyapunov functions are either the
maximum or the minimum of two quadratic terms. By us-
ing the so-called S-procedure [2] and a variable reduction
technique, we obtain necessary and sufficient conditions
for establishing robust asymptotic stability of the uncer-
tain system using such a piecewise Lyapunov function.
The resulting optimization problem involves a set of lin-
ear matrix inequalities{LMIs) with two scaling parameters
which can be numerically searched.

We show via an example that good improvement on
the estimate of robust stability margin can be obtained by
using these piecewise Lyapunov functions when compared
with the quadratic stability technique.

2 Problem formulation
Consider the hinear time-varying system:

&= A(t)z, A(t) € A2 Co{ds, 4} (2.1)

Our aim is to produce a test which is less conservative
than quadratic stability result with reasonable computa-
tional cost. In particular, we use two kinds of piecewise
Lyapunov functions as follows:.

V(z) = max{z' Piz,z' Pz}, P >0,P; >0 (2.2)
and

V(z) = min{z'Piz,2' Paz}, P1 > 0,P, >0 (2.3)
In order to derive conditions for robust asymptotic sta-

bility of (2.1) with the Lyapunov function (2.2) or (2.3),
we need the lemma below.
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Lemma 2.1 (S-procedure lemma (2]) Let Fo(x) and
Fi(z) be two arbitrary quadratic forms over ®". Then
Fo(z) < O for all z € R™ satisfying Fi(z) < 0 if and only
if there exist 7 > 0 such that

Fyo(z) — Fi(z) <0, Vz € R".

Lemma 2.2 [7] system (2.1) is robustly asymptotically
stable for all A(t) € A with the Lyapunov function (2.2)
if and only if there exist solutions to the following set of
inequalities:

APi+PiA —M(Pa—~P) < O (2.4)
ApPr+ PLAs — 2P~ P) < 0 (2.5)
AP+ PoAL +23(Pa~P) < 0 (2.6)
APy + PoAs+Ma(Pa—P1) < 0O (2.7)
P >0,P,>0 (2.8)

AL > 0,22 >0,28 > 0,4 >0 (2.9)

Similarly, wé can have a result for the Lyapunov func-
tion in (2.3):

Lemma 2.3 system (2.1) is robustly stable for all A(t) €
A with the Lyapunov function (2.8) if and only if there
erist solutions to the following set of inequalities:

APL+PA+M(Pr—P) < 0 (210)
ApPL+ Pids+X(Pa~P1) < 0 (2.11)
AP, + PAL —M(P—P1) < 0 (212)
APy + Pods = Ay(Pe—P) < 0 (213)
PL>0,P,>0 (2.14)

A1> 0,222 0,23 > 0,24 >0 (2.15)

Remark 2.1 The use of Lyapunov functions (2.2)- (2.3)
and the S-procedure is not new [6, 7]. In fact, it is shown
[1] that the system (2.1) is robustly asymptotically stable
if and only if there exists a piecewise quadratic Lyapunov
function of the following form:

Viz) = 'P; ; i =
(z) 1??‘5){;;{3: Pz}, P;>0,i=1,..,p.

for some p. But the stumbling block is that the subsequent
optimization problem is non-convex. This is true to some
degree even for (2.4)- (2.9) or (2.10)- (2.15). If we fiz P
and P», then (2.4)- (2.9) and (2.10)- (2.15) are convez
problems. This also the case if we fix A;,i = 1,...,4 (refer
to [7] for example). However, (2.4)- (2.9) and (2.10)-
(2.15) are not jointly convez in Py, Py and );.



3 Main Result

In this section, we are going to provide a variable re-
duction procedure which can reduce the number of non-
convex variables A; in (2.4)- (2.15) from four to two. Also,
the range of the new convex variable will be set to [0, 1]
for easy numerical implementation. Since the resulting
problem involves only two non-convex variables, numer-
ical searching of these parameters becomes a moderate
problem.

Theorem 3.1 The system (2.1) is robustly asymptoti-
cally stable with the Lyapunov function (2.2) if and only
if there exist 61,62 € [0,1] such that the following set of
LMIs have a solution for Hy and Hs:

A’lHj_ +Hi1A1 <0
A’sz + H2A2 <0
(1 — 62)(A'1H2 + HzAl) + 62(H2 - H]_) <0
(1 — 61)(A’2H1 + H1Az) - 51(H2 —_— Hl) <0
Hy=H;>0,H, =Hy; >0

(3.16)

If this is the case, then V(z) = max{z'Hiz,z'Haz} is
also a valid Lyapunov function for establishing the robust
asymptotic stability of the system (2.1).

Theorem 3.2 The system (2.1) is robustly asymptoti-
cally stable with the Lyapunov function (2.3) if and only
if there exist 61,62 € [0,1] such that the following set of
LMIs have a solution for Hy and Hy:

AlH, + HAL <0
ALHy + Ha A2 < 0
(1 - 82)(ALH2 + HoAy) — 62(H2 — H1) <0
(1 —_ 61)(A’2H1 + HlAz) + 51(H2 — Hl) <0
Hy,=H; >0,H, =H3 >0

(3.17)

If this is the case, then V(z) = min{z'Hyz,2'Haz} 1s
also a valid Lyapunov function for establishing the robust
asymptotic stability of the system (2.1).

Proofgof theorem 3.1 See the full paper [9] for details.

4 Extension to discrete-time systems

The results in theorems 3.1 and 3.2 are readily extendible
to the discrete-time case. More specifically, we consider
the following discrete-time system

z(k +1) = A(k)z(k), A(k) € A2 Cof{A1,A;} (4.18)

The discrete-time counterpart of theorems 3.1 and 3.2 is
given below.

Theorem 4.1 The system (4.18) is robustly asymptoti-
cally stable with the Lyapunov function (2.2) if and only
if there exist 61,62 € [0,1] such that the following set of
LMIs have a solution for Hy and Hj:

A'H A —H <0
AyH3 Az — Ha <0
(] - 52)(A'1H2A1 - Hz) + 62(H2 - Hl) <0
(1 . 61)(A5H1A2 — Hl) - 61(Hz — H1) <0
H,=H; >0,Hy =H, >0

(4.19)

If this is the case, then V(z) = max{z'H;z,z'Haz} is
also a valid Lyapunov function for establishing the robust
asymptotic stability of the system (4.18).
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Theorem 4.2 The system (4.18) is robustly asymptoti-
cally stable with the Lyapunov function (2.8) if and only
if there exist 61,82 € [0,1] such that the following set of
LMIs have a solution for Hy and Hs:

AYH1A1—-H1 <0
A’2H2A2 —Hy <0
(1 - 62)(A'1H2A1 - Hg) - 52(Hz -— H1) <0
(1 — 61)(A'2H1A2 - Hl) + 61(H2 - Hl) <0
Hy >0,Hs >0

(4.20)

If this is the case, then V(z) = min{z'Hiz,z' Haz} is
also a valid Lyapunov function for establishing the robust
asymptotic stability of the system (4.18).

5 Numerical Example

In the full paper [9], an example is given to demonstrate
that better robustness bounds can be achieved using the
Lyapunov functions (2.2) and (2.3).

6 Conclusions

In this paper, we have investigated the use of piecewise
Lyapunov functions for providing better estimation of ro-
bust stability. The Lyapunov functions we used are in the
form (2.2) and (2.3). We have proposed necessary and
sufficient conditions for robust stability of convex combi-
nations of two matrices. These conditions are numerically
efficient. We show through an example that our method
can produce better estimation than existing methods.
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