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Abstract

The so-called subband identification method has been introduced recently as an alternative method
for identification of finite-impulse response systems with a large tap size. It is known that this method
can be more numerically efficient than the classical system identification method, while having compatible
performance. In this paper, we assume a probabilistic framework, and we deal with the following two
problems: (1) whether or not the identification result depends on the particular realization of the random
process under consideration, and (2) whether or not, the identification algorithm converges to the minimum
of the error function. We study these properties by considering both the error functions in individual
subbands and a combined error function. We study the critical-sampling and the oversampling cases. We
show that optimum convergence is not always guaranteed in the oversampling case. A slight modification
in the identification algorithm will be proposed to fix this problem.

1 Introduction

This paper studies the use of the so-called subband identification method for identification of linear time-
invariant systems. This is a relatively new approach and is intended to replace the classical linear system
identification technique for applications where the system model is an finite-impulse-response (FIR) filter with
a large tap size.

The key idea of the subband identification method is to subdivide the given input-output signals of the
system into a number of subbands in the frequency domain by using filterbanks and down-samplers and
identify subband models of the system. There are two main types of subband identification schemes, one using
critical-sampling and another using oversampling. Critical-sampling refers to the scheme where the number of
subbands is equal to the down-sampling factor, whereas in the oversampling scheme the number of subbands is
more than the down-sampling factor. For comparative purposes, we will refer the classical system identification
method as fullband identification. The reader is referred to [1, 2] for an introduction to fullband identification.

Subband identification has been used in speech signal processing applications where long FIR models are often
required. See, for example, [3, 4, 5, 6, 7, 8, 9]. In general, there is crossing of aliases between subband
channels due to filter overlaps; see [3]. There are two main approaches to cope with this problem. The
first approach uses critical sampling by applying non-overlapping filterbanks which result in spectral gaps
between subbands; see [4]. In order to cope with this problem, the paper [5] used auxiliary channels, with
the corresponding extra computational cost. Finally, the paper [6] introduced the use of adaptive cross-terms
between subbands. However, these cross-terms increase the computational cost and the slow the convergence
rate. The second approach uses oversampling. For example, the paper [7] analyses the existence of exact
solutions of the identification problem without cross-terms. The paper [8] use the gabor expansion to design
the filterbanks, which restrict the flexibility for the filterbanks. The paper [9] analyzes the performance of the
oversampling case under a number of simplifying assumptions, and [10] does it in a more rigorous way.

In [10], a comparative study is given for subband identification vs. fullband identification. It is shown that
the subband method, with a careful choice of design parameters (number of subbands, downsampling factor,
filterbanks, and subband models), offers compatible asymptotic residual error and asymptotic convergence
rate but with a significantly smaller computational cost. This analysis is done in a probabilistic framework,
i.e. under the assumption that, the input signal and the output noise are random processes. When working
in a probabilistic framework, an interesting question is whether there is strong convergence, i.e. whether the
result of the identification depends on a particular realization of the random process. Another question to ask



is whether there is optimum convergence, i.e. whether or not the identification result converges to the global
minimum of the error function. These two properties together will be refered to as convergence properties.
The purpose of this paper is to give conditions to satisfy these convergence properties for error functions in
individual subbands and for a combined error function. We will study both the critical-sampling case and
the oversampling case. We will show that optimum convergence is not always guaranteed in the oversampling
case. Based on this observation, we will propose a slight modification in the identification algorithm that fixes
this problem.

2 Subband Identification

The scheme of subband identification is depicted in figure 1. The idea of subband identification is to split
both signals u(t) and y(t) into M subbands using analysis filterbanks h(q) = [h1(q),...,har(q)]T. These
subband signals are down-sampled and the results are denoted by two vector signals U (t) = [Uy(2), ..., Up (t)]F
and Y (t) = [Yi(t),...,Yar(£)]Z. The subband parametric model G(q,8) = diag{G(¢,0m), m = 1,..., M},
where 6 = [67,...,67 17 is identified in order to reconstruct W (t,6) = [Wi(t,61), ..., War(t,6,,)]” which is the
subband equivalent of 4@ (t,6). The prediction error V(t,60) = [Vi(t,61), ..., Var(t,0,)]T = Y (t) — W(t,6) is
then formed. Finally, an up-sampler and a synthesis filterbank f(q) = [f1(q), -, fa(g)]” is used to reconstruct
0(t, ).
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Figure 1: Subband identification, direct representation

For analysis purposes, we denote by W (t) = [Wy(t),..., War(t)]T the downsampled version of h(q)w(t). We

define W (t,0) = W(t) — W(t,0) = [Wi(t,61),..., W (t,6,,)] and denote by @(t,8), the signal obtained by

upsampling W (t,0) and then filtering it with f(g). We also denote the downsampled version of h(q)v(t) by
V() =[Vi(t), ... Vu ()]

In [10], it was shown that, with a careful choice of design parameters (number of subbands, downsampling
factor, filterbanks, and subband models), the performance of the subband method, in terms of asymptotic
residual error and asymptotic convergence rate, can be made compatible to fullband identification. However,
the computational cost of the subband method can be significantly smaller. We summarize these results below:

Define the identification error as the power of the signal w(¢, ), given by

T
Sa(0) = lim lZg{uv*(t,a)w(t,a)}

T—oo T

where the superscript * denotes complex conjugate, and let 6 denote the set of parameters computed, by the
identification algorithm, up to time IN. Then, the asymptotic residual error is defined as

S lim = 1\}E>noo Sa(On) (1)

Suppose we identify the system with the fullband method, using an FIR model of order ns, and let SLE. be

w,lim
the asymptotic residual error obtained in this way. Now, suppose we also identify the same system using the



subband method. Assume that the subband models ém(q, 0m), m=1,..., M are FIR with tap size n,, and the
filters h,,(q), m = 1,..., M are FIR with tap size lj,. If the input signal {u(¢)} is white, then the asymptotic
residual error of the subband method Sy 1im is bounded by

Satim S (J(n) + K (1)) [|g@)II7 Su + S (2)

where J(I) and K(ns) are decreasing functions of /5, and ns respectively, whose expressions are irrelevant for
the purposes of this paper.

For the convergence rate, we have that, for large n; and N, and for small Sy jim,
E{Sa(On) = Saum} S L5, (3)

where S, is the power of the noise signal v(t).

The asymptotic convergence rate (3) coincides with that of the fullband method. Therefore, by choosing I},
and ng large enough, we can have compatible performances on both methods. However, by optimizing the
values of M and D, the computational cost of the subband method can be made significantly smaller.

Let us now explain the two convergence properties we are looking for. For a fixed value of 6, Sz(0) is a
deterministic value. However, since 8, N € N (the set of natural numbers, i.e. integers greater or equal to
one) is a random process, it follows that Sy (6 ) is a random process. Therefore, we hope for the nice property
that the limit in (1) does not depend on the particular realization of the random processes {u(t)} and {v(¢)}
(strong convergence), i.e. that there exists Sy im > 0, such that

Sotim = lim Sg(fn) w.p. 1 (4)
N—oo

where w.p. 1, means with probability one. Once this is met, we further hope that Sy jim coincides with the
optimum value of the function Sy (6n) (optimum convergence), i.e.

S lim = min Sw(6) (5)

where D denotes the range of 6.

3 Convergence Properties

3.1 In Every Subband

In the m-th subband, let Sy (6;,) denote the power of the signal Wi (t,0m) and let 6, x denote the set of
parameters, on that subband, computed up to time N. Equation (2) is derived under the assumption that

]\;gnoo Sy, (Om,N) = ,in S, (Om) wp. 1, m=1,.,.M (6)

So, as the first step in the study on convergence properties, we will state the conditions for (6) to hold. The
following assumptions are required:

Assumption 1 The signals {u(t)}, {w(t)} and {v(t)} satisfy:

1. {u(t)}, {w(t)} and {v(t)} random processes, generated by any arbitrary combination of filtered white
noise and deterministic signals.

2. {v(t)} is independent of {u(t)} and {w(t)}.
3. for all A,B € N and a,b € Z (the set of integers), the following limit exists

T
.1 .
Th_r}réo T t; E{z(At + a)y* (Bt +b)}

where z(t) and y(t) denotes any of u(t), w(t) and v(t).



Assumption 2 We assume the prediction error identification method, i.e. 0,, N is chosen as follows

O N € argo mi1r)1 Vin, N (0rm)

m m

where

R 2
Vm(t,ﬁm)‘

N | =

1 N

t=1

Assumption 3 The subband model is a diagonal matriz G’(q,ﬁ) = diag{é’m(q,ﬁm), m = 1,..., M}, where
6 =1[600)7,....,0:m)"1" and 0,, € Dy, C C, m = 1,..., M, where Dy, is assumed to be compact (i.e. close
and bounded). For each m € {1,....M}, the model ém(q,ﬁm) 1s a parametric linear model. There exists
G(q) € L(Z) such that |Gm(q,0m)] < G(q), for all 6,, € Dy, and there exists G'(q) € 11(Z), such that
|C¥’ #(q,0m)| < G'(q), for all 6,, € Dy, and for k = 1,...,n,,, where é’m’k(q,e) is the k-th component of the

m

vector G'(q,6,,) = 3%@(‘1,@) ;

m

Assumption 4 The analysis filterbanks 1(q) and h(q) are such that l,,(t) and h,,(t) € 11(Z), for all m =
1,.., M.

Theorem 1 Consider the subband identification scheme of figure 1, together with assumptions 1-4. Then, (6)
18 satisfied.

Proof: See [11, Theorem 4]. |

3.2 Subbands Combined
Now we turn into the convergence of the overall error Sz (6n). We treat the critical-sampling and the oversam-

pling cases separately. Note that critical-sampling is a particular case of the oversampling case, so everything
that applies to the latter, also applies to the former.

3.2.1 Critical-sampling

Definition 1 Consider the subband identification scheme of figure 1. Suppose we make u(t) =0 and

£(t) = ~h*(=1) (7)

Cc

If 5(t,0) = v(t), then the filterbank h(q) is called paraunitary [12].
In the critical-sampling case, both (4) and (5) are satisfied by requiring the following extra assumption:
Assumption 5 The analysis filterbank h(q) is paraunitary, and the synthesis filterbank f(q) is given by (7).

Theorem 2 Consider the subband identification scheme of figure 1, in the critical-sampling case (i.e. D =
M), together with assumptions 1-5. Then, both (4) and (5) are satisfied

Proof: See [10, Corollary 2]. |



3.2.2 Oversampling

The following theorem gives the conditions for (4) to be satisfied. One extra assumption is required:
Assumption 6 In every subband, the set argming, ep,, Sy, (0:m) has only one element.

Remark 1 Note that assumption 6 is easy to satisfy. It is satisfyed if, for example the subband models

N

G(q,0m) are FIR and each subband input signal U,,(t) have its spectrum bounded from below by a positive
constant.

Theorem 3 Consider the subband identification scheme of figure 1, together with assumptions 1-4 and 6.
Then, (4) is satisfied.

Proof: See [11, Theorem 5]. |

In the oversampling case, (5) is not satisfied in general. However, both (4) and (5) can be guaranteed by a
slight modification in the identification method of assumption 2. We state the modification in the following
assumption:

Assumption 7 6, n is chosen as follows:

Om,N € argo min Vy(6y,)

mE€Dm

where

Va(Om) = |0(t, 6,m)|

N | =

N
t=1

and ﬁ(t,ﬁm) denotes the random process 0(t,0) expressed as a function of the parameters of the m-th parametric
model G (q,0m)-

2=

Theorem 4 Consider the subband identification scheme of figure 1, together with assumptions 1-4 and 7.
Then, both (4) and (5) are satisfied

Proof: To be provided in the final version of the paper. [ |

4 Conclusion

In this work we have studied the convergence properties, i.e. strong convergence and optimum convergence,
of the subband identification method. We have provided the conditions required to satisfy both properties for
both the error functions in individual subbands and a combined error function.
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