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Abstract. This paper reports some new study on the
subband identification approach. We first provide a
complete characterization for the subbands to be de-
coupled in the sense that different subband channels
are statistically independent and the subband model
is diagonal. We then apply this result to studying the
performance of subband identification schemes based on
recursive least-squares algorithms. We provide expres-
sions for the computational cost, asymptotic residual
error, and convergence rate. These expressions can be
used to determine when the subband approach is ad-
vantageous over the full-band approach. A simulation
example is given to demonstrate these advantages.

1 Introduction

The problem of linear system identification has been
studied extensively, with many references available; see,
e.g., [1, 2]. Algorithms based on LMS or least-squares
are commonly used and their behaviors are well un-
derstood. However, a direct use of these algorithms is
often found unsuitable for real-time applications such
as speech echo cancellation and channel equalization
where high order FIR models are typically required.
For example, a typical room may have acoustic rever-
berations lasting 50ms. If speech signals are sampled at
20KHz rate, a 1000-tap FIR filter is required to model
the reverberations. Implementing adaptive filters of
such a high order requires very fast computation. Also,
the convergence rate of very high order filters is typi-
cally very slow.

These difficulties has motivated a new line of research
on system identification using subbands; see, e.g., [3, 4]
and the references thereof. Roughly speaking, the sub-
band approach divides the input and output signals into
a number of subbands using two filter banks, and a
model is identified for each subband channel. Some-
times the so-called “cross-filters” are used to model
interferences between different subband channels [3].
These subband models are then combined to give a
full-band model. A detailed description is given in Sec-
tion 2. A lot of studies has been done to understand
the performance of the subband approach. It is known
that the subband approach leads to significant savings
in computational time and convergence rate.
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In this paper, we show some new study on the behavior
of the subband identification approach. We consider
a popular option of the subband approach where the
subband channels are decoupled. The first problem we
address is how to design the filter banks for the in-
put and output signals so that the subband channels
are decoupled in the sense that the signals in differ-
ent channels are statistically independent and the sub-
band model is diagonal. This property is important
because in this case different channels can be identified
separately. For critically sampled subbands, it is well-
known that if the filter banks for the input and output
signals are designed using ideal low-pass and band-pass
filters, decoupling of the subband channels occurs. We
show that this turns out to be the only possible de-
sign modulo channel permutations. Based on this, we
give a complete characterization of all filter banks which
achieve decoupling.

The next problem we analyze is the performance of the
subband approach when a recursive least-squares iden-
tification algorithm is used for subbands. The moti-
vation for this study stems from the fact most of the
performance study done on subband identification is
based on LMS algorithms; see [3, 4] and the references
thereof. We give expressions for the computational
cost, asymptotic residual error and convergence rate.
These expressions can help us choose the number of
subbands to achieve a good performance. It can also
be seen from these expressions when the subband ap-
proach yields a superior performance in all the three
aspects above. This is demonstrated via a simulation
example, where the advantages of the subband identi-
fication are clearly demonstrated.

2 Subband Representation

Consider a single-input single-output linear time-
invariant system with the following model:

9(2)u(z)
w(z) +v(z)

w(2)
y(2)

where g(z) is the transfer function of the system, u(z) is
the input, w(z) is the output, v(2) is the measurement
noise, and y(z) is the received signal, all expressed in
Z-transform. Their time-domain representations are to
be denoted by g(t), u(t), w(t) and v(t), respectively.

(2.1)



The idea of subband identification is depicted in Fig-
ure 1. In this scheme, both the input and the re-
ceived signals are split into subbands using two anal-
ysis filter banks 1(2) = [lo(2),l1(2), - ,Ip-1(2)]T and
h(2) = [ho(2), h1(z),--- ,Ip—1(2)]T which are not nec-
essarily the same. For simplicity reasons, we only con-
sider the case of maximal decimation, i.e., the num-
ber of subband channels equals to the down-sampling
rate. The subband identification is done via a trans-
fer matrix model G(z) in the subband with the pre-
diction of the subband model minimized in some
way. Finally, the prediction error is converted back
to the full-band using a synthesis filter bank f(z) =
[fo(2), f1(2), -+ , fo-1(2)]T to give an estimate of the
noise, 9(t).
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Figure 1: Subband Identification Block Diagram
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Figure 2: Polyphase Representation of Subband ID

An alternative representation of the subband identifica-
tion scheme is the polyphase representation depicted in
Figure 2. The relationship between the representations
is standard [5] and is given below:

90(2) 91(2) gp-1(2)
G(z) = | #'gp-1(2)  90(2) 9p—2(2)
z7lg1(2)  z7lg2(2) 90(2)
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hoo(z) h01(z) hob(z)
H(z) = ho(z)  hu(2) © hyp(2) (2.3)

hpo(2) hp,(2) hpp(2)
where D = D — 1 and g;(2) is the ith polyphase com-
ponent of g(z), i.e.,

D-1
9(z) = Y z7'gi(zP) (2.4)
=0
A similar definition applies to lxi(z), hri(2), etc. The
matrix functions L(z) and F'(z) are defined similarly to
H(z).

It is assumed throughout the paper that H(z) and L(z)
are stable and invertible. The invertibility is required
for the subband system to preserve all the information
in the full-band.

It is straightforward to verify that the conditions for
the subband to have the same representation as the
full-band:

G(z) = H(2)G(2)L™\(2) (2.5)
and
F(2)H(z) = z7%I (2.6)

where d > 0 is an integer to allow some delays in the
noise estimate 0.

3 Decoupling of Subband

From the previous section, we understand that the sub-
band model G(z) is required to satisfy (2.5) so that it
is equivalent to g(z) in the full-band. In general, the
channels in the subband are coupled. This poses diffi-
culties in identification of the subband system.

In this section, we seek the conditions under which the
subband system is decoupled in the sense that the sub-
band channels are statistically independent and the sys-
tem model G(z) is diagonal. This case is of particular
importance because different channels can be identi-
fied independently, leading to significant advantages in
terms of computation cost, accuracy and convergence
rate. These advantages will be analyzed in the next
section.

We first rewrite G(z) in (2.2) as follows:

D-1

G(2) = ) gi(2)Ei(2) 3.1)

=0
where

0 Ip_;

Ei(z)=[z—lli 0 ]77’=07’le

(3.2)



Then, (2.5) becomes

D-1
Gx) = Y gi(2) Ei(2) (3.3)
i=0
where
Ei(2) = H(z)Ei(2)L™'(2) (3.4

In order for G(z) to become diagona.l for all g(z), or
equivalently, for all g;(2),i =0,---,D — 1, it is neces-
sary and sufficient that each Et(z) must be diagonal.
The following result gives the conditions under which
E;(2) are diagonal.

Theorem 1 Consider the matriz functions E;(z),i =

-,D~1, as defined in (3.4) with stable and invert-
ible matriz functions H(z) and L(z). In order for all
Ei(z),i =0,---,D — 1, to be diagonal, it is necessary
and sufficient that

H(z) = ——P(z)I‘H(z)WD(z F) (3.5)
L(z) = 7 LP(2)TL(z)WD(2~% '
where T (z) and T'r(2) are invertible diagonal trans-

fer matrices, P(z) is an arbitrary permutation matriz
function, W is the so-called digital Fourier transform
(DFT) matriz and is given by

W = [w*] (3.6)
with w = exp(j2x /D) and
D(2) = diag{1,z7%,--- , 2~ (P~} (3.7)
In this case, G(z) and g(z) are related by
G(z) = P(z)I‘H )diag{gP (2),- - , g% " (2)}
r7'(z)P(2)T
(3.8)
and
[90(z) a(z) - gpa(a) ]
= D)W (T7 ()P()TCEPEILE))
(3.9)

where (X)) represents a column vector containing the
diagonal elements of the matriz X, and

D-1
= Z 24Dy

=0

“*gi(2) (3.10)

Proof: Obviously, any H(z) and L(z) can be ex-
pressed as in (3.5) with appropriate I'g(z) and I'z(z)
which are not necessarily diagonal. Therefore, we need
to prove that all E;(z) are dlagonal if and only if T'g(2)
and I'y (2) are diagonal.
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It is straightforward to verify that

D(2)E;(z) = 2~ /P E;(1)D(2 ) (3.11)
and

WE(1)W1=w® (3.12)
where

w = diag{1,w?,--- ,wP~Vi} (3.13)
Hence,

Ei(z) = 27 /PP()Tu(2)W T (2) P(2)T

(3.14)

It is obvious that Ej;(2) are diagonal if Ty (2) and I'z(2)
are diagonal. It remains to prove the converse.

Denote by & (z), w® and 4 (2) the jth column of
Ei(z), W and I'[!(z), respectively. Also denote by
o) (2) the diagonal matrix function with the kth diag-
onal element equal to the kth element of v/ (z). Also
assume P(z) = I for the moment. We then have

e9(2) = 27/ PTy ()19 (2)w®

It follows that

[é((].)) & ... é(b’)_l] = Tu(2)lY ()WD(= )
(3.15)
The fact that E;(z) being diagonal implies that the left-
hand side has all rows equals to zero except the jth
row. This and the invertibility of Iy (z) mean that
all the elements in IY(z) except one must be zero so
that the two sides of (3.15) can have the same rank.
Further, the nonzero element in a different I'V(2) must
occur in a different row to assure that I'"!(z) is non-
singular. Hence, I'"!(z) is a diagonal matrix, modulo a
z-dependent permutation matrix. Returning to (3.14),
we also conclude that 'y (2) must be a diagonal matrix,
modulo the same permutation. Since the permutation
matrix is considered in (3.5), T'g(z) and I'r(z) are di-
agonal. Finally, the verification of (3.8) and (3.9) is
straightforward. ™

Next, we investigate the conditions required for the sub-
band channels to be statistically independent. To this
end, we first consider the input signal to the subband.
Denote by u(t) the subband input vector, i.e.,

u(t) = [u(tD) u(tD +1) --- u(tD+ D - 1))*
(3.16)
Denote by ¢,(z) and ®,(z) the spectral densities of
u(t) and u(t), respectively. Then, thelr relationship is

given in the following lemma.

Lemma 2 The spectral density ®,(z) is given by

D-1

Z Bu,i(2)E; (Z)

=0



where E;(z) are given in (3.2) and ¢y i(2) is the ith
polyphase component of ¢,(2).

Proof: The autocorrelation matrix for u(t) reads

R(7) E{u®)u’ (t+ 1)}
[E{u(tD —i)u(tD + 1D - ])}]

[r(rD + 5 = )]0

i ]"’0

where 7, (7) represents the autocorrelation function for
u(t). Then,

Pu(z2) [Z:Z_w ro(TD +j — i)z_r]:’)j_:lo
Zi’;—él ¢u,i(Z)Ei(z)

If we denote by ¢,(z) and ®,(z) the spectral densities
of v(t) and v(t), respectively. Then, we also have

D-1
D" 6u,i(2)Ei(2)

=0

&, (2) = (3.18)

Denote by ®,(z) the spectral density matrix of u(t).
We‘ then have the following result.

Theorem 3 A given invertible filter bank H(z) is such
that the spectral density matriz ®,(z) is diagonal for all
éu(2) if and only if

H(z) = —P(z Tu(2)WD(2?)

where Ty (z) is a stable and invertible diagonal matriz
function, and P, W and D(z) are defined as in Theo-
rem 1. In this case,

8y(2) = P(2)Tu(2)ding{ LR 2
. 2?_01 —i/Dy,—i(D— 1)¢
Ly (z71)P(2)T

(3.19)

~i/D

ey

(3.20)
Proof: Note that
© D-1

@ (Z)—H(Z Z%z 2)Ei(2)H"(27")

=0

where * denotes the Hermitian operation. We also note
that W* = DW 1. The rest follows from Theorem 1
by taking L=!(z) = H*(z71). a

The decoupling conditions for the subband noise vector
v(t) is similar.

We conclude this section by providing a remark on The-
orems 1 and 3.

Remark 4 [t is assuring that the decoupling condi-
tions for the subband model G(z), input spectrum den-
sity matriz, and noise spectrum density matriz are con-
sistent. In fact, this property is easy to ezplain by com-
paring the two subband representations in Figures 1 and
2. If we consider the definition of the Alias Component
Matriz [5] (Au(2) and AL (2)), from (8.5), it follows
that

AR (2)
AL(#)

The permutation matriz P(z) allows subband channels
to be formed using different arrangements of the por-
tions of the unit circle; and the diagonal matriz func-
tions Ty (2) and I'r(z) serve as shaping functions for
the input and noise in the subbands. The significance
of the results in Theorems 1 and 8 is of two-fold. First,
it is shown that the above configuration for the subband
filters is mot only sufficient but also necessary. Sec-
ondly, mathematical relationships between the full-band
and decoupled subband functions are revealed.

= P(2)Tx(2)
= P(z)lL(2)

4 Comparative Study

.The aim of this section is to compare the performances

w_md’u,i(z)a |
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of the subband method with full-band method.

First, it should be noted that the ideal decoupling fil-
ters cannot be realized using rational functions, leaving
alone FIR functions. In reality, FIR functions or IIR
functions are used. This, of course, introduces approxi-
mation errors and residuals in off-diagonal terms in the
subband model. To keep our analysis simple, we neglect
these approximation errors.

As stated in remark 4, we can form a subband channel
by combining several narrow-band channels. But this
is not a practical choice because as we take narrower
bands, the filter’s impulse response becomes longer. We
also want the filter coefficients to be real So the opti-
mal filter design is

3

L (e?*)

{

where o, = [-Lﬂ#ﬂ-, -2 U [B, mDilﬂ,]'

(4.1)

B (e7¢)

Il

5 In(e)

1 weon
0 otherwise

Computational Cost. The computational cost de-
pends on what recursive least squares (RLS) algorithm
is used. In this analysis, we assume that the computa-
tional cost (measured in terms of the number of mul-
tiplications) in the full-band case is roughly equal to
9n per sample. This is in line with several fast RLS
algorithms; see [6]. It is easy to see that the cost in the



subband case is 3l + 9n, per (full-band) sample, where
l is the tap size for each band-limited filter in the filter
bank, and n, is the average number of parameters in
each subband. The choice for ! should be ! = kD, for
some constant k. For large k and small D, this choice
assures that the leakage power of the band-limited filter
due to the finite tap size is independent of the number
of subbands.

Asymptotic Residual Identification Error. One
possible criterion for choosing the tap size for the model
of each subband channel is to take

n+ 21
D

n
= B+k

ng = 4.2)
This assures that the subband model has at least the
same accuracy as the full-band model, if the approxima-
tion errors of the filter banks are negligible. In practice,
this choice is often found to be too conservative, espe-
cially for high frequency bands where the signal and
noise powers tend to be small.

Convergence Rate. Denote by gn(z) and gn(z) the
identified models of g(z) using full-band and subband
methods at sample N, respectively. Further define

1 [ o)
e

T
lg(e™) — gn (jw)|?dw

S'u/u

Sn L

and Sy similarly. It is well-known [1] that

E{gn(e!)} = g(e*) (4.3)
Jim E{SN} = $-5u (4.4)

provided that u(t) and v(¢) are uncorrelated. The limit
above is not needed if both u(t) and v(t) are also zero
mean and white.

For the subband method, we have the following result
on the convergence rate:

Theorem 5 Suppose that g(z) has order n or less and
u(t) and v(t) are statistically independent and that the
model for each subband channel, §n,(z), has the same

order ng. Then,
Dnyg
wam SN = T S (49)

Proof: From the definition of Sy and decoupling
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property of the subbands, it follows that

ZZW_/

m—O

1 ; a2
— . I5Y — 4 Jw
D §=0 o /ng l9(e?B) — gm N (e7)| dw

R D 12
9(6") = gm,n(eP¥)|" dw

where g, n(2) is the identified model for the mth di-
agonal entry of G(2). Define

/ () 4,
Do, ¢u(e]u)
Also note that the number of samples for each subband
is 1/D of that for the full-band. Now, we get

1
27

(m) _

vju

(4.6)

b

g (m)

/D v/u

Z S

Ep I

Dns

S{SN}

l

i

Dn
) =5 S

bl

5 Simulation Results

In this section we demonstrate the performance of sub-
band identification through two examples. The first
one corresponds to a system with the impulse response
shown in figure 3. For the fullband method, n = 400

Figure 3: System’s impulse response

is used. For the subband method, D = 5 and k£ = 100
are chosen. The same convergence rate can be achieved
if we choose n, = 80 for each channel. Unfortunately,
this cannot guarantee that the asymptotic residual er-
ror in the subband method is comparable to the full-
band method. We know from the impulse response in
(3) that the main part of its energy is in the first two
subbands, we can increase the number of parameters in
these subbands by reducing the number of parameters
in other bands. The effect of this shuffling on the con-
vergence rate is difficult to assess but should be minimal



if ST()'/"J defined in (4.6) does not vary much for different
subbands.

In figure 4, the identification errors of both methods
are plotted as a function of the number of samples pro-
cessed. We can see that the convergence rate is ap-

~—— Fullband Method
Subband Method

o 1000 2000 3000 4000 5000 8000 7000 8000 9000 10000
t

Figure 4: Residual error and convergence rate

proximately the same for the two methods and that
the residual error is smaller for the subband method. It
has to be noted that the subband method starts later
begause it has to accumulate a bigger number of data
for {the most important subbands. This is due to the
shuffling of the parameters. It is easy to check that the
subband method has only 62% of computation for the
full-band method, which is the big advantage.

Figure 5 shows the normalized prediction error for v(t),

given by the two methods. It is clear that the subband

method works better.

The second example involves estimation of the rever-
beration model in a room. A testing signal is sent out
from a speaker and the reverberations are measured us-
ing a microphone. The settings for the full-band and
subband methods are similar to the first example. The
identification results are shown in Figure 6.
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Figure 5: Prediction error for v(t)
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Figure 6: Prediction error for the reverberation model

6 Conclusion

In this paper, we have studied the decoupling conditions
for critically sampled subband identification. Based on
these conditions, performance analysis has been done to
understand the computational cost, asymptotic resid-
ual error and convergence rate of the subband method.
It is clear that the subband method is suitable to appli-
cations where the full-band model is of very high order
and computational cost is critical. In this case, the
subband method offers compatible convergence rates
but requires substantial less computation and gives less
asymptotic residual errors. Simulation examples have
been used to illustrate this point.
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