Proceedings of the 40th IEEE
Conference on Decision and Control
Orlando, Florida USA, December 2001

ThP06-1

System Identification Using Subband Signal Processing

 Damian Marelli and Minyue Fu
Department of Electrical and Computer Engineering
University of Newcastle, N.S.W. 2308 Australia

Abstract

The purpose of this paper is of twofold. First, we give a
tutorial on a new approach to system identification us-
ing subband signal processing. Secondly, we study two
types of subband identification schemes, one using criti-
cal sampling and cne using over-sampling. We compare
the behavior of the subband identification technique
with the traditional “full-band” identification technique
in terms of the computational cost, asymptotic residual
error and convergence rate. This comparison is used to
demonstrate the potential power of the subband tech-
nigne. We also consider design issues for subband iden-
tification, especially for the case with over-sampling.

1 Introduction

The theory of linear system identification is well devel-
oped. Many references are available on the subject; see,
e.g., [1, 2]. Identification algorithms based on the least-
squares technique are commonly employed in practice
and their behaviors are well understood. However, the
direct use of this algorithm is unsuitable for real-time
applications where high order finite impulse response
(FIR) models are required {e.g. speech echo cancella-
tion and channel equalization).

To alleviate the computational problem, the so-called
subband identification technigue has been proposed; see,
€.g., {3, 4]. Loosely speaking, the subbanrd approach di-
vides the input and output signals into a number of sub-
bands using two analysis filterbanks, respectively. Each
analysis filterbank consist of a bank of M filters whose
output is downsampled by a factor of D (i.e. one out of
D samples is kept). Then for each subband channel, a
subband model is identified. These subband models can
be combined to give a full-band model. In many applica-
tions, the subband models are used directly to estimate
certain subband signals which are combined using a syn-
thesis filterbank to form a required signal estimate.

An example of such applications is speech echo cancella-
tion. The reverberation model for a typical video confer-
encing room requires a tap size in the order of 500-1000
or more. A training signal is often available for esti-
mating the reveberation model. Estimating a full-band
model may be very computationally involved, not men-
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tioning the numerical stability issues. In this case, sub-
band models of reverberations can be estimated using
more a numerically efficient subband identification algo-
rithm. These models can then be used to give an esti-
mate of the source signal (i.e., the speech signal without
reverberation) in each subband. Finally, these subband
signals are combined to give an estimate of the (full-
band) source signal.

Another application where the subband identification
technique can be used is broadband wireless channel
equalization. Othorgonal frequency division multiplex-
ing is a preferred modulation technique. This involves
using a possibly large number of equally-spaced sub-
carriers to modulate transmit signals. The communica-
tion channel involves many (slowly time-varying) mul-
tipaths. One main difficulty with broadband wireless
equalization is that the multipath channel model may
require a large tap size, mainly due to the high data rate.
Again, the subband identification can be used to solve
this problem. There is an extra advantage of the sub-
band technique in this application because the subband
signals (i.e., the subcarrier signals} are readily available
at the receiver. As we will see that this advantage yields
a major computational saving,.

The purpose of this paper is of twofold: First, we give a
tutorial to the subband identification approach. We will
show why this approach can be more numerically effi-
cient than the full-band approach for applications where
a high order model is required. Secondly, we study two
types of subband identification schemes, one using criti-
cal sampling and one using over-sampling. Critical sam-
pling refers to the case where the number of subbands
is equal to the down-samnpling rate, whereas in the over-
sampling case the number of subbands is more than the
down-sampling rate. The former case is simpler to use
and easier to understand, whereas the latter case in-
volves more design problems but give further computa-
tional savings. We compare the behavior of the subband
identification technique with the traditional “full-band”
identification technigue in terms of the computational
cost, asymptotic residual error and convergence rate.
This comparison is used to demonstrate the potential
power of the subband technique. We also consider de-
sign issues for subband identification, especially for the
case with over-sampling. We will also give an example to
illustrate the performance of the subband identification
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technique.

2 Review of Fullband Identification

The standard full-band identification technique is de-
picted in figure 1. Here, the signals u(t),v(t) are as-
sumed to be zero-mean, uncorrelated random processes,
the plant g(z) is a linear time-invariant system, the
model §(z) is an FIR model of order ny. We consider
the prediction error method for formulation of the iden-
tification problem. More specifically, if we express the
model as j(g) = §(q,6,), where g is the forward shift op-
erator (i.e. gz(t) = z(t + 1)) and §(g,d) is a parametric
model on the parameters 8, then, the optimal vector of
paramneters up to time ¢t (i.e. 6,) is chosen as shown in
equation (2.1)

0 = min ;(y(t) - §lg,0)u(t))? (2.1)

The optimal parameters are solved using a recursive
least-squares algorithm.

u(z)

Figure 1: Fullband Identification Block Diagram

The properties of the aforementioned full-band identifi-
cation method are well understood. It is known [1] that,
if g(z) is linear time-invariant and has a finite impulse
response with the tap size less than or equal to ny, then
d(z) is guaranteed to converge to g(z) asymptotically.
From [5], we know that the convergence rate of the pa-
rameters is approximated by

E{Ufb(”} - angﬁ asnyg,t — oo (2.2)

where w(t) = w(t) — w(t). The computational cost de-
pends on the particular recursive least-squares (RLS)
algorithm used, ranging from O(ny) to O(n7}). Fast al-
gorithms should be used for applications with a high
order model, but they tend to be difficult to implement
and sensitive numerically; see [6] for a summary of RLS
algorithms. For comparative purposes, we consider a
reasonably efficient algorithm in [2] for which the com-
putational cost, measured in terms of the number of
multiplications per sample, is given by

¢ ::an

From the quick review above, we can already give some
intuition why the subband identification can be advan-
tageous compared to full-band identification. To this
end, we consider the three key properties as mentioned
above: asymptotic residual error, convergence rate, and
computational cost. For simplicity, we assume the crit-
ical sampling case where D = M. First, we point out
that in each subband, the frequency response of the sys-
tem is much smoother. Therefore, each subband model
requires a much lower tap size, compared to the full-
band model. It turns out that it is reasonable to take
the tap size for each subband model to be ny /A plus a
small constant which we will ignore here. This assures
that the subband identification has a negligible asymp-
totic residual error. Secondly, we note that the number
of samples in each subband is reduced by a factor of M.
This means that the convergence rate remains roughly
the same. Thirdly, the computational cost will be M
times cheaper because both the tap size and the num-
ber of samples in each subband is reduced by a factor of
M and that there are M subbands. For RLS algorithms
with complexity more than O(ny), there will be more
savings offered by the subband appreach. The analy-
sis above shows clearly the advantage of the subband
approach. However, we have not taken into account the
extra computation required for forming the subband sig-
nals. As we will see later that this is a major design
issue which determines the efficiency of the subband ap-
proach. Nevertheless, we have seen the possibility of
using subbands to save computations.

3 Subband Representation

The subband identification idea is depicted in figure 2.
Here u(z),v{z) and g(z) are as in section 2 and we use

v(z)

ulz

Figure 2: Subband Identification Block Diagram

frequency domain signals every where.

As we mentioned in Introduction, the idea of subband
identification is to split both signals u(z) and y(z) into
M subbands using two analysis filterbanks I(z) and h(z).
These subband signals are down-sampled and the results
are denoted by two vector signals U(z) and Y(z). The
subband model G(z) is identified in order to reconstruct
W(z) which is the subband equivalent of @(z). The
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prediction error V(z) is then formed. Finally a synthesis
filterbank is used to reconstruct ©(z).

An alternative representation of the subband identifica-
tion scheme is the polyphase representation depicted in
Figure 3. The relationship between the representations

UP(Z)

y

Gp(2)

Hp(z)

N Y(z) .
U(z) R W{z) Vg V(z)
Le(2) G(z) FE(z—>

Figure 3: Polyphase Representation of Subband 1D

is standard [7] and is given below:

99(z) 9 (z) P-D(z)
Gp(z) = | 2719 P V() ¢9(z) g(0-(z)
z—ly(l)(z) 2—19(2)(2) g(")(z)
(3.1)
S W P
Hp(z) = h("’() BOG) L RPTG) (32)
EY ) w2 ¢ wlP D)

where g4 (z) is the ith polyphase component of g(z),
ic.,

D—1
2= 3 2P (33)

A similar definition applies to li‘)(z), h}:’(z), ctc. The
matrix functions Lp(z) and Fp(z) are defined similarly
to Hp(z).
It is assumed throughout the paper that Hp(z) and
Lp(z) are stable and invertible. The invertibility is re-
quired for the subband system to preserve all the infor-
mation in the full-band.
It is straightforward to verify that the conditions for
the subband to have the same representation as the full-
band:

G(z) = Hp(z)

G(z)Lp'(2) (34)
and
Fltz)Hp(z) = 271 (3.5)

where d > 0 is an integer to allow some delays in the
noise estimate 0.
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The two analysis filterbanks can be different in which
casc some frequency shaping of the system model can
be achieved. But in this paper, we assumec they are the
same, i.e., Lp(z) = Hp(z).

4 Decoupling of Subbands

In general, the condition (3.4) requires the subband
model &(z} to be a full matrix. This complicates the
identification process substantially. To simplify the com-
putation, the filterbank H(z) is usually designed to re-
duce the number of non-zero terms in & (z). In the fol-
lowing, we analyze the ideal case where the subband
channels are decoupled which implies that G(z) is a di-
agonal matrix.

It is intuitive to see that decoupling of subbands re-
quires each filter ki, (2),m = 0, ..., M —1, to have a finite
support ap,. That is, their ideal frequency response is
b (e*) = 0 outside its support. These filters are typi-
cally implemented using FIR filters. Since the tap sizes
of filters have a negative influence on the computational
cost, it is desirable to minimize them. In order to do
that, it is required that o, be a connccted subset of
[-m,7]. Decoupling of subbands also implies that o,
has measure less 27/D. Finally, (3.4) requires that the
union of &y, cquals to [~m, #]. In summary, the sup-
ports g, € [—#, ) of the filters k() need to meet the
following conditions:

C1 o, is a connected subset of [—, x]
C2 o, has a measure less or equal to 2x/D
C3 UM gy, = [-n,7]

If D = M, these threc requircments imply that hn,(z}
are simply a set of non-overlapping idcal bandpass filters
with the passband having a length of 2x/D. In the case
where D < M, the filters A, (2z) are still ideal bandpass
filters with the same bandpass length, but in this case
their supports are allowed to overlap.

To complete this section, we study the tap size n, re-
quired for each subband model. For this we introduce
the following result:

Theorem 1 Consider the subband identification
scheme of figure 2. If l(z) = h(z), and kh(z) met the
three conditions above, then the model required in every
subband is given by

Gum(t) = (Cm(7) * g(7))(Dt) (4.1)

where 'y, (z) is the ideal passband filter given by

1 w€ra
Fm(w)={ 0 w¢d:



Proof: A sketch of the proof is given below. Tt is
known [7} that

D-1
z(Dt) = Z71 {Z x(WdzllD)} (4.2)
d=0
where W = ¢ %, and if z = rexp(j¢), then 2/P =
ri/o exp(jm%ﬁu). Let W{z) be the subband
equivalent of w(z), then

p-1
Wa() = 55 3 hn(WaP)g(Wis/ (WP
d=0
. . lD—l
Wn(z) = Cu(@)g 3 B (W Py (W21 P)
d=0

Let Bm(2) = V-m(VPm )P with V = /% (ie. Bm(2)
maps the unit circle into the support of the filter ki, (2)).
Ii can be shown that the two equations above are still
true if we replace z!/2 by B, (2). Doing this and taking
into account that A, (W28, (2} =0 (d=1,...,D - 1),
if we want Wy, (2) = W,,(2), we need

Cm(z) = g(Bm(2)) (4.3)
On the other hand, from (4.2), we have that

(Cm(7) * 9(7)(DF) = 27" {g(Bm (2))} (44)

since Tpp(W9Bm(2)) = 0 (d = 1,...,D ~1).~ Equa-
tion (4.1) follows immediately from equations (4.3)
and (4.4). [ ]

Taking h(z) = I(z) and using (4.1), we can choose
ng = %—f +n' (4.5)

where n' is the amount of extra parameters required due
to the spread that the convolution produces on g{7).
For most applications where high accuracies are not re-
quired, it is usually sufficient to choose a small n’. Typ-
ically, n < 20.

5 Critical-Sampling Case

In the case of critical sampling, D = M. The decoupling
condition implies that each support o, is connected and
has measure equal to 27/D. However, the shape of each
filter hn,(z) within its support determines the conver-
gence rate of the corresponding subband model. It can
be shown that, in order to maximize the convergence
rate, by, (/) needs to be fat within its support. Con-
sequently, the ideal analysis filterbank is given by

hu(z) = ho(V™z) (m=0,.,M-1)
jL _ \/5 - < w < R
Iho(e’ )l - { 0 ot}A{Ierwise ¥ (5.1)

\/1—) ho(&?)
e+ & E LR N )
2 _x i 21 >
M M M M

Figure 4: Analysis filterbank choice for the critical-
sampling case

The filterbank is depicted in Figure 4. This conclusion
is actually a special case of theorem 2 in section 6.
The ideal filters hp, (2) will be approximated using linear
phase FIR filters of length I, whose frequency response
can not have zero amplitude in its stopband. Suppose u
is a white random process and we want to minimize the
error due to interference in between subbands. It can be
shown that the FIR filter should be the one that mini-
mizes the energy (A) in its stopband. This filter is known
to be an FIR eigenfilter; see [8]. The required tap size
I(M, X) can be computed numerically. The choice of A
influences the asymptotic residual error for the subband
identification. Hence, A needs to be small. However, A
should not be too small or the filtering cost will be too
high..
Once the analysis filterbank is determined as above, the
synthesis filter is a dual filterbank. In theory, the filters
of the dual filterbank have infinite length, but empirical
results show that they can be truncated up to the same
length as the analysis filters without having a significant
reconstruction error. Hence, the computation for the
synthesis filterbank is compatible to that for an analysis
filterbank.
It is easy to see that with the filterbank design (5.1), the
convergence rate is given by

E{afﬁ(t)} - tT;—SDcr?, ~ ?o’ﬁ asns,t — oo (5.2)
which coincides with (2.2). Finally, the computational
cost needs to include the overhead for computing the
subband signals U(z) and Y (z) and reconstruction of
9(z), and is given by

¢ = 3U(M, A) + 9n, ~ 3L(\)M + 9% (5.3)

where the approximation corresponds to the case where
ny » n'. From (4.5), (5.2) and (5.3), it is clear that
we can optimize the value of M so as to minimize the
computational cost while having the asymptotic residual
error and convergence rate compatible with the fullband
method.

6 Oversampling Case

The case of critical sampling has the obvious advantage
that the number of subbands is minimal. This is cer-
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tainly a factor that influences the computational cost.
The disadvantage of critical sampling is that the filters
km (%) need a sharp transition band. The required filter
length is considerably long, which contributes negatively
to the computational cost. The idea of oversampling is
to increase the value of M so as to allow filter patterns
that are easier to approximate using FIR filers.

In a way similar to section 5, we want to design A, {2)
to yield fast convergence rate. We have the following
result to this end.

Theorem 2 Consider the filterbank design for the over-
sampling case where D' < M. The filters hm(z) are re-
quired to satisfy the conditions CI-C5. Then, in order
to mazimize the convergence rate, the best choice for the
analysis filterbank is given by

hp{z) = hefV™2) (m=90,..,.M 1) (6.1)
\/5 - < W< Wy
lhole®™)| = ViZoVar Fu tw <w < twy
0 we < wl <

where wy = 2% (314— - %) and we = 2w (%) The filter
shape is depicted in Figure 5.

Proof: To be provided in the full version of the paper.
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Figure 5: Analysis filterbank cheice for the oversampling
case

As in section 5, we will approximate the ideal filters
b (2) with linear phase FIR eigenfilters. The tap size
of the filter will be denoted by {(M, D, ), where A is
the energy difference between the ideal filter and the
FIR eigenfilter. Again, the tap size can be determined
numerically.

With the filter design (6.1), the convergence rate coin-
cides with {5.2). The computational cost is given by

6 = %(SE(M,D,/\)—i-Qns) (6.2)

12

M ny
5(3l(ﬂ4,D,A) + 9—5)

We can numerically optimize the values of M and D to
give the minimum computational cost.

7 Simulation Results

In sections 5 and 6, we state that, with the two cases of
the subband method, we can have the same performance
as the fullband method (asymptotic residual error and
convergence rate} at less computational cost. Further,
we expect that the computational savings are more sig-
nificant in the oversampling case. In order to illustrate
this, we identified the transfer function of figure 6 using
the tree methods.

43
H
i

Figure 6: Plant Impulse Responce

We used a tap size of ny = 200 for the fullband method.
This choice of ny means that the full band model ignores
the part of the impulse response after ¢ = 200, resulting
approximately 6% of error. The tap size of each subband
model will depend on the value of D, as shown in equa-
tion (4.5). We take n' = 1 which is sufficient for the
subband method to have a compatible error.

As said before, either equation (5.3) or (6.2) needs to
be numerically minimized in order to get the optimal
values of M and D. In figure 7 we show the computa-
tional cost as a function of M. To plot the oversam-
pling case, the computational cost corresponds to that
obtained by using the optimal value of D for each M.
From the figure, it looks like the computational cost of
the oversampling case remains constant after M ~ 10;
however, for M > 20 it grows again. For this example,
the adopted values are M = 3 for the critical-sampling
case and M = 15, D = 11 for the oversampling case.

In the design of the filterbanks, the adopted value of the
leakage energy was A = 0.05. The filterbanks for both
cases can be seen in figures 8 and 9.  The evolution of
the power of the identification error is shown in figure 10.
We see that the convergency rate and residual ervor of
the three methods are compatible. However, the com-
putational costs are 1800 multiplications per {fullband)
sample. for the fullband method, 1002 for the critical-
sampling subband method and 452 for the oversampling
subband method.
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Figure 8: Filterbank for the critical-sampling case

8 Conclusions

In this work, we have analyzed the performance of
the decoupled subband identification method, in both
critical-sampling and oversampling cases, by compar-
ing them with the classical time-domain identification
method (the fullband method). The comparison is based
on three performance indexes: computational cost, con-
vergence rate and asymptotic residual error.

In sections & and 6, and equation (4.5), we have shown
that, with the appropriate design of the filterbanks, and
the appropriate selection of the number of parameters
in each subband, the convergence rate and asymptotic
residual error of both subband methods are compatible
with that of the fullband method, but, if the impulse re-
sponse of the system to be identified is large enough, the
computational costs are smaliler. Further, more compu-
tational savings are expected in the oversampling case
since it includes the critical-sampling case as a particular
case,
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