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Abstract. This paper studies the problem of regional
stability and performance analysis for a class of non-
linear uncertain systems. Both continuous-time and
discrete-time systems are considered. Our approach is
based on the use of polynomial Lyapunov functions.
We show how these functions can be used to reduce
the conservatism in analysis. The conditions for analy-
sis are given in terms of inear matrix inequalities to al-
low feasible computational implementation. These in-
equalities are derived by introducing auxilary nonlinear
algebraic equations and applying Finsler’s lemma. It
turns out that continuous-time systems and discrete-
time systems require sharply different techniques in
order to achieve simple linear matrix inequalities. A
numerical example is used to illustrate the approach
and show that the proposed method can lead to less
conservative results when compared with results using
quadratic Lyapunov functions.

1 Introduction

Robust control of nonlinear uncertain systems has been
a very active research area over the last decade or so.
A lot of recent research focuses on analysis and syn-
thesis approaches in the framework of linear matrix
inequalities (LMIs). Design approaches range from us-
ing quadratic Lyapunov functions ([1, 2, 3]) to those
based on polynomial Lyapunov functions ([4, 5, 6, 7]).
In general, non-quadratic Lyapunov functions are less
conservative for dealing with uncertain and nonlinear
systems than quadratic Lyapunov functions at the ex-
pense of extra computation.

In this paper, we study the problem of regional stabil-
ity and performance analysis for a class of nonlinear
uncertain systems. Both continuous-time and discrete-
time systems are considered. We will use polynomial
Lyapunov functions in conjunction with linear matrix
inequalities. For continuous-time systems, two prob-
lems are studied: 1) Guaranteed Lo performance and
2) Regional stability with bounded input disturbance.
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There is a common underlying idea in dealing with
these problems, that is to decompose a given nonlinear
system into a simpler form using auxiliary state vari-
ables. The decomposed system has system matrices de-
pendent affinely in the state and uncertain parameters
rather than a general nonlinear form. Such a decom-
position allows us to convert various analysis problems
into a set of LMIs, which can be tested numerically. For
discrete-time systems, we study the problem of regional
stability. We also use the decomposition idea men-
tioned above. However, it turns out that the detailed
approaches for continuous-time and discrete-time sys-
tems are quite different due to the fact that the deriva-
tive of a Lyapunov function (for the continuous time) is
linear in the system matrix whereas the difference of a.
Lyapunov function (for the discrete time) is quadratic
in the system matrix. This distinction makes it much
more difficult to derive LMIs conditions for discrete
time systems when the system matrix involves nonlin-
earities and/or uncertain parameters. To get around
this difficulty, we have generalised a recent robust sta-
bility result for discrete-time systems in [8] which uses
a LMI not involving a quadratic term of the system
matrix. An numerical example is used to illustrate the
benefit of the use of polynomial Lyapunov functions.

2 Continuous-time Systems: Guaranteed L,
Performance
Consider the uncertain nonlinear system

= A(z,0)z, z(0)=uzo
C(z,0)x (1)

z

where z € R" is the state vector, § € R! is the un-
certain paramater vector and z € R” is the output
performance vector which belongs to a polytope Bs.

Given a polytope B, C R", which contains the origin,
and a performance bound ¢, the problem of concern
is to find the maximum invariant set R, C B, such
that the Lo-norm of the performance output signal is
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z(t) € R. for all t > 0 and ||2]3 < c.

We suppose that system (1) can be decomposed as:

z = Ai(z,0)z+ As(x,0)7
2= C1 (z,0)z + Coz, 6)w (2)
0 = (z,0)z+ Nz, d)n

where 7 € R™ is an auxiliary state vector which
is a nonlinear function of (z,4) and the matrices
Ai(z,9),Ci(z,6) and Q;(z,d), i = 1,2, are affine func-
tions of (z,4). It turns out that a large class of nonlin-
ear systems can be decomposed into the form (2). For
more details, see [5].

We choose the Lyapunov function to be of the form:
v(z,0) = z'P(z,d)z

P(z,0) = [ 9(;:5) ]'P[ 9(;:5) ] (3)

where ©(z,d) is an affine function of (z,d) and P is a
symmetric matrix to be determined. Defining

L @)
We can rewrite v(z) = &' P€. Then,
b =E'PE+EPE

Observe that
%(@(:@ 0)z) = O(x,8)x + O(x,0)d
Since ©(z, d) is an affine matrix of (z,d), we may write
O(z,8)x = O(x,d)z (5)
for some O(z,d) which is affine in (z, ).
To upper-bound the Ly-norm of z, we require

ar'z < v(z,d) <ez'z
v < =Z'z

, Yz € B;,0 € Bs (6)
where €; > 0 are constants. Also define
Re={z:v(z,0) <c, Vo€ Bs} (7)
It follows that R. is an invariant set and
ll2ll3 < v(z0,8) < ¢ Vzo € R, (8)
provided c¢ is such that

Re C By 9)

To deal with (9), we represent the polytope B, by its
vertices or by using a set of inequalities, i.e.,

Be={z:az<1, k=120 (10)

of B,. Then, the condition (9) can be rewritten as
1 —a;cx >0, Vz:v(z,d) <c¢,k=1,2,---,n, (11)
Applying the well-known S-procedure, we get

[;]/[ {2_86] [0 ;alk]] [2]207 -

a

Applying the Finsler’s lemma, it turns out that the
testing of (6) and (12) can be done using LMIs, as
given in the result below.

Theorem 1 Consider the system (2). Let ©(x,8) be
a given affine matriz of (z,d). Define

G = [O Ql(:r 8)]
5 - I —0(z,8) +0(z,0)
o 0 In
0
"= A2<z,6>]
X9 —Z1 0 0 (13)
M= |0 @ T
0
L 0 0 Tp —Tp-1
0 M 0 0
No= 11 —@]’F—[o Al]
Suppose there exist matrices P = P', R and Lj;,

i,7 = 1,2,3 that solve the following optimization prob-
lem, where the LMIs are satisfied at aoll vertices of

Bm X B,s.'
maxc subject to:
2—c¢c [0 —ay
[ 0 ] P+RN+N'R
—ay
—LpxE Ay Aps 0
P—LpnE Ay Ay 0
—L3E Azy Az 0
0 [C] C -L/2

} >0, Vk
(14)

He <0

where

Aig = L”G + LZQF + LL3N, Aig = L“Qz(l’, (5) + ngH
Then, v(x,0) is a Lyapunov function for the system (2)
and (6) and (9) are satified.

See [5] for proof.
3 Continuous-time Systems: Robust Stability
with Bounded Input Disturbance

Consider the following uncertain nonlinear system:

& = A(z,8)x + By(z,8)w, z(0) =0 (15)
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where z, 8, A(z,d) are the same as in (1), and w is an
input disturbance. We assume that w € W with

W= {w(t) [T wrww < 1} (16)

where 4 > 0 controls the “size” of W.

Given a polytope B, C R™ as in (10), which contains
the origin, and W, we want to determine the regional
stability of the system (15) which is defined below.

Definition 1 The system (15) is called regionally sta-
ble (with respect to W and B, ) if z(t) € B, for allt > 0
and all w € W. The corresponding set W is called a set
of admissible input disturbances (with respect to By ).

The key idea involved in the study of admissible in-
put disturbances is to overbound the state trajectory
generated by a disturbance input using a level set of
a Lyapunov function, which in turn is overbounded by
B.. More precisely, we consider a Lyapunov function
of the type v(z,d) = 2 P(x,8)x as in (3) and the over-
bounding level set is given by

R={z:v(z,9d) <1} (17)

In addition, suppose v(z,d) satisfies the following con-
ditions for €; and €s:

az'z <v(r,d) < er'x (18)
o(z,8) < plw' (Hw(t), VE>0 (19)
RCB, (20)

Integrating both sides of (19) from 0 to 7' yields
T

vugmagn*/ o (Yw(t)dt < 1, V6 € By,w € W
0

If the condition (20) is satisfied, then z(t) € R C B,
for all £ > 0 and w € W.

Using (3), it can be shown that

(©+0)Az + (© + ©)B,w ]/P[@m]

o(z,0) =2 [ Az + B,w z

Similar to (2), we also suppose that (15) can be decom-
posed into the following form:

T = Al(w76)$+A2($55)T(+B1(zv5)w+B2(x35)c
0 = Qz,0)z + Qao(z,0)7
0 = Zi(z, 0w+ Zx(x,6)C

(21)

where 7 and ¢ are nonlinear vector functions of (z, d)

and A;(z,9), Bi(z,6),Qi(z,6) and Z;(z,d) are affine

matrix functions of (z,d).

Again, by applying Finsler’s lemma, we can convert
(18), (19) and (12) into a set of LMIs. To express our
result, we define M and N as in (13) and

0ny, (©+0)4,

]7 Ay = [ (O +0)A, ]:

0 Al A2
_[©+6)B _[©+6)B,
Bal = |: Bl 7Ba2 - -B2 ’
N 0 0 0O
=0 9 0 0
0 0 = =

Theorem 2 Consider the system (15) and its nonlin-
ear decomposition (21). Let B.,Bs and W be given.
Suppose there exist P = P', R and L,k =1, -+ ,n,
solving the following LMI problem, where the LMIs are
constructed at all vertices of B, x Bs:

1 [0 a]
i 0’
[aok] (P+LiN+NL) |7
k=1,...,n (23)
[ (A:nPl'f' PA, ) PA,, PB,; PBy
An2P 0 0 0
B:up 0 —pt 0
L B,,P 0 0 0
+RY + 'R <0 (24)

Then, the system (15) is regionally stable with respect
to B, and W.

See [6] for proof.

4 Discrete-time Systems

Consider the following discrete-time nonlinear system:
oy = A(z(k),0)z(k), =4 =z(k+1)  (25)

where z(k), § and A(z, ) are similar to the continuous-
time case.

The problem of concern in this paper is to determine a
region in the state space in which robust stability and
performance of system (25) is guaranteed.

We have the following basic result:

Lemma 1 Consider system (25). Let v(z,d) =
:B,P(?L‘,(S):L‘ be a given Lyapunov function candidate,
where P(x,08) is a matriz function of (x,0). Define
a region in the state space as follows:

R={z:ze€R" 2P, dz<1, VsechBs} (26)
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Suppose there exist ¢; > 0, 1 = 1,2,3, such that

QT < a:,P(x, Oz < €21 T (27)
z (A(x,a)’P(z+,5)A(x,5) - ’P(x,d)) z < —esz'z (28)
VzeR, § € Bs

where x4 is as defined in (25). Then, v(x,d) is a Lya-
punov function in R and R is a domain of attraction
for system (25).

The conditions (27) and (28) are difficult to check be-
cause the coupling of A(z,d) and P(zy,d) gives high
nonlinearity. To get around this problem, we introduce
the following technical result:

Lemma 2 Consider system (25) and v(z,8) and R
as defined in Lemma 1. Suppose (27) and the follow-
ing inequality holds for some auzilary matriz function

G(x,0):

7] [oamion "3 ][]
<-—exx, VreR,ye R8¢ Bs (29)

where
Pt =P(z4,0) - G(2,8) — G (z,0)

Then, v(x,d) is a Lyapunov function in R and R is a
domain of attraction for system (25).

See [7] for proof.

We note that when A(z,d),P(z,d) and X (z,d) do not
depend on z, the result above reduces to a result in [8].

In order to proceed further, we also need to decompose
the system (25) using auxiliary state variables. But
differently from the continuous-time case, we suppose
the following decomposition:

zy = A(z,d)z = All(z,d)z
Q(z,0)I(z,8) =0 (30)
Ql(z,d) = I,

where A and @) are constant matrices and (z,d) and
II(z,0) are matrix functions which are affine in (z, ).

The Lyapunov function will be the same as in (2). Ob-
serve from lemma 2 that we need to compute

7

Play,6) = [ ®§Zj) ] P(9) [ @](::) ] .

To this end, we require the following constraint:

0@ | _ s = | B e,
67(1;”] iz, ) [QH]I o) (31)

0] 2 mes =] 2 e

where Fi, Hy are constant matrices.

We choose the auxilary matrix function G(z,48) to be
of the following form:

G(x,8) = II (2,6)G(6) (32)
where G(9) is affine in § but to be determined.
We also need a polytopic bounding set B, for R. We

will require (29) to hold for all x € B, instead of R.
This bounding set is also described by (10).

In order to ensure that the Lyapunov matrix function
P(z,9) is positive definite for all z € B,, we can apply
the Finsler’s lemma and obtain the following condition:

P(8) + LY (z) + L' ¥\ (z) >0

Vr € B,,0 € Bs &
where L is a free matrix to be determined and
Ui(x)=[1 -O(z) ] (34)

In order to maximize the volume of R, we normally ap-
proximate it by minimising the trace of the Lyapunov
matrix. However, P(z,d) is a nonlinear function of
(z,0) that leads to a nonconvex condition. To over-
come this problem, we will approximate the volume
maximisation by

= (P(8) + LWy (z) + L ¥, (z)) (35)

Here is the main result for discrete-time systems:

Theorem 3 Consider the system (25) as decomposed
in (30). Let ©(z) be a given affine matriz function
of x satisfying (31) and the Lyapunov matriz function
P(x,d) be in the form of (2). Let B, be a given bound-
ing set as in (10). Define ¥1(x) as in (34) and

Oz, d) 0

Vom0 =1 0 qg,0) |-

(36)

Suppose there exist affine matrices G(8) and P(d) and
constant matrices L, R and M;,j = 1,---,n. solving

the following linear matriz inequalities at all vertices
of X x A:

minn subject to:

n— trace (P(6) + L (z) + Wy (s)L ) >0 (37)

P(8) + LW (z) + ¥, (z)L >0 (38)
1 [ 0 d ]

[ (2 ] (P®) + M;w,(2) + ¥, (2)M;

> (39)

Vj:17"'7ne (40)
[ —F'P()F A G ]
G()A  H PO)H -GQ — Q' G(s) | (41)
+RUy(x,8) + Wy (z,0)R <0
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Then, v(z,8) = & P(x,8)z is a Lyapunov function in
R and R is a domain of attraction for system (25).

See [7] for proof.

5 Illustrative Example

To illustrate the benifit of using polynomial Lyapunov
functions, we analyze a continuous-time example with
input disturbance and we compute an upper bound on
the L-gain of the system.

Consider the following time-invariant and uncertain
system which is based on the Van der Pol equation:

0 -1

e [1 (0.8+0.25)(m§—1)]“[?]w
2 = sitw, 3(0)=0, §€[-1,1]

(42)
where w € W for some p > 0. We want to find the
maximum g for regional stability. To this end, we carry
out the decomposition of (42) as in (21) with

T ey

1 08 0 —02 08 02
B, = (1’ Cl_[l 0D =1
;c20 0 0 0

1o s 10 0

=10 o 0 -1 0
0 0 0§ -1

[x122 622 zlxz dxizs)

Let B, be the polytope defined by the vertices

=] =] e
where a is a given scalar.

Define the Lyapunov function by choosing

1‘1[2 5 I 0
O(z,0)=10z]]|=>0= 0 T2
oI, | O2x1 O2x1

Also, consider that the matrix partition for P below:

P, P

P=1p p

With the above partition, we can obtain the following
types of Lyapunov matrices:

1. P(z,6) is quadratic in (z, d);
2. P, =0: P(z,9) is affine in (z,d);

3. P, =0, P,=0: P(z,d) = P is constant charac-
terizing a quadratic Lyapunov function.

Table 1 shows the estimated admissible sets W (defined
in size by p) using theorem 2 with the above Lyapunov
matrices. For all solutions @ = 0.7 is used. As ex-
pected, the polynomial Lyapunov function (quadratic
Lyapunov matrix) achieved the best estimates, thus
justifying the required extra computation.

Lyapunov Matrix
Constant | Affine | Quadratic
7 0.298 0.300 0.486

Upper-bounds

Table 1: Estimated sizes of input disturbance.
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