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Abstract
Controller design to compensate vibration, hysteresis and time delay in a high-speed
serial-kinematic X–Y nanopositioner is presented in this paper. A high-speed serial-kinematic
X–Y nanopositioner, designed in-house, is installed in a commercial AFM and its scanning
performance is studied. The impediments to fast scanning are (i) the presence of mechanical
resonances in the nanopositioning stage, (ii) nonlinearities due to the piezoelectric actuators
and (iii) time delay introduced by finite clock speeds of the signal conditioning circuitry
associated with displacement sensors. In this paper an integral resonant controller is designed
to mitigate the effect of the resonance along the X axis (fast axis). The control design
accommodates for the time delay, thereby ensuring robust stability. A high gain integral
controller is wrapped around the damped nanopositioner to ensure sufficient linearity near the
region of operation. For actuation along the Y axis (slow axis), where the bandwidth
requirement is less demanding, a notch filter is used to increase the gain margin and the
nonlinearity is compensated using a high gain feedback controller. Enhancement in the
scanning speed up to 200 Hz is observed. Imaging and tracking performance for open loop
and closed loop scans up to 200 Hz line rate is compared and presented. Limitations and
future work are discussed.

Keywords: high-speed atomic force microscope (AFM), flexure guided nanopositioner,
piezoelectric actuators, integral resonant control (IRC), time delay, tracking

(Some figures may appear in colour only in the online journal)

1. Introduction

The atomic force microscope (AFM) was first introduced in
1986 by Binnig and Quate [1] to develop the surface topology
of non-conducting samples with atomic resolution. Since its
invention, the AFM has become one of the most versatile
scientific instruments, with its applications extended in many
scientific fields such as physics [2], chemistry [3], biology [4],
material science [5], metrology [6], and more. Advancement
and research in the field of nanotechnology such as the work
reported in [7] have been possible with the help of the AFM.

Applications of the AFM have been growing and researchers
in many fields are attempting to customize AFMs as per their
requirements [8–10]. One such requirement is a high-speed
AFM which allows the visualization of biological processes
that occur within a fraction of a second [11–15].

The AFM generates three dimensional images of a
sample surface using the positioning information along its
three axes. In practice, the sample is moved in a raster
pattern with the help of a nanopositioner to achieve lateral
positioning. The sample surface is probed to deduce the
vertical positioning information corresponding to the lateral
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Figure 1. Different components of the nanopositioning stage model.

position of the sample. Raster scanning involves actuating one
of the axes of the nanopositioner to track a triangular signal. A
triangular signal contains all odd harmonics of its fundamental
frequency [16]. The higher harmonics constitute the edges
of triangular signals which are responsible for sharp changes
in the direction of motion of the nanopositioning stage.
While tracking a triangular signal, these harmonics may excite
the structural resonances, leading to vibrations that hamper
tracking of signals. Therefore, the scanning frequency, in
practice, is limited to one tenth of the structural resonance
frequency [17–19]. High-speed nanopositioning applications
require positioners with high resonance frequencies. This
enables the actuators to change the direction of motion of
the nanopositioning stage at high scanning rates without
triggering the resonances of the stage. Most commercial
AFMs are equipped with piezoelectric tube nanopositioners.
The scanning bandwidth of a typical nanopositioner is limited
to a few Hertz because of its low resonance frequency.
Recently, flexure-guided nanopositioners have been used
as an alternative to piezoelectric tube nanopositioners [9,
20–24]. Flexure-based nanopositioners produce smooth
motion through elastic deformation of a structure. They can
be designed to have significantly higher resonance frequencies
than those of piezoelectric tube nanopositioners.

Although a higher resonance frequency can be achieved
by efficient mechanical design of flexure-based nanoposi-
tioners, the tracking performance is limited due to their
lightly damped structure. Also, flexure-based nanopositioners
incorporate piezoelectric actuators [9, 12, 25, 23, 21,
26, 27] which show nonlinear behavior like hysteresis
and creep [17–19]. Capacitive sensors are often used in
nanopositioning applications because of their high resolution
and bandwidth. The sensor readout circuit introduces a
time delay in the system, which deteriorates the tracking
performance. Figure 1 shows that the main impediments to
performing high-speed scanning are vibrations, nonlinearities
and time delay. In this paper, we attempt to address these three
issues in order to achieve high-speed scanning with nanoscale
accuracy.

To overcome nonlinearities and for effective tracking
of reference signals, closed loop tracking controllers often
incorporate a high gain integral action [18, 19]. The controller
provides high gain at low frequencies and effectively reduces
the effect of nonlinearities. However, the presence of lightly
damped resonance poles imposes restrictions on gain margins,
limiting the bandwidth of the controller. Damping of resonant
peaks is an effective method to increase the bandwidth
of the integral control. Different damping techniques have
been reported in the literature such as positive position
feedback (PPF) [28], shunt control [29], resonant control [30],

integral resonant control (IRC) [31–34] and, more recently,
force feedback control [35]. Inversion-based controllers
such as inversion filters [36] have also been reported
which use inverted plant dynamics to suppress the resonant
peaks. However, inversion-based controllers do not provide
robustness to changes in system parameters which is critical
in nanopositioning systems. The load mass in these systems
changes with the investigated sample causing significant
variation in the natural frequencies of the system. On the other
hand, damping controllers artificially increase the damping of
the closed loop system making it comparatively insensitive to
changes in natural frequencies and, thus, facilitate the robust
implementation of integral controllers for tracking.

In this paper, IRC was designed and implemented in
closed loop on a high-speed nanopositioning stage to damp
the first resonant mode of the stage. Integral resonant control
has been recently introduced [37] as a simple, robust and
high-performance control technique for damping resonant
modes of flexible structures with collocated piezoelectric
actuator–sensor pairs. It has been successfully used to control
the vibrations of manipulator arms [38] and piezoelectric
tubes [34]. Other controllers, such as loop shaping controllers
and optimal controllers such as LQG, have been implemented
to improve scanning performance [39–43]. However, they
typically lead to controllers with orders that could be several
times larger than that of the plant [41]. The sliding mode
control approach has also been investigated as a control design
tool for robust tracking in nanopositioning systems [44–46].

It has been shown in [34, 47] that, in the positive
feedback configuration, IRC provides guaranteed closed loop
stability for negative imaginary systems under some finite
gain conditions. These results are not always applicable to
all high-speed nanopositioning systems as they are often not
negative imaginary. For example, the time delay introduced
by the signal conditioning circuitry of the capacitive
sensors becomes significant over the large bandwidth of the
nanopositioning system. Consequently, they should be treated
as a resonant system with a time delay. In this paper, the
stability conditions for IRC are evaluated to accommodate
resonant time delayed systems such as nanopositioning stages
using the framework of the results presented in [48].

The Smith predictor has been shown to compensate the
effects of time delay in plants [49]. The working of the Smith
predictor, however, is based on the internal model control
(IMC) principle which is not suitable in the current context.
The IMC principle involves inverting the plant dynamics
for cancellation of poles, in this case the lightly damped
poles. The robustness of the closed loop with respect to
perturbations in system parameters is not guaranteed with
IMC. This may lead to degradation in tracking performance
and non-repeatability of scans.

In the case of high bandwidth nanopositioners the effect
of time delay can be seen in the tracking performance in
the form of phase lag. Feedforward control integrated with
feedback control can be used to overcome the delay [50, 51].
Direct inversion of plant dynamics is not possible as the time
delay introduces non-minimum phase (NMP) zeros in the
system. Inversion of such a system will lead to unstable poles.
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Figure 2. High-speed X–Y nanopositioner.

In this paper, off-line inversion of the plant dynamics has been
presented which uses Fourier series to construct the input to
the plant [32].

The paper is organized as follows. Section 2 describes
briefly the nanopositioner used for experimentation. In
section 3, characterization of the nanopositioner dynamics
is presented and models are identified for control design.
Section 4 presents the design of IRC for the X-stage.
Feedforward control is presented in section 5 followed by
discussion on the design of the notch filter and high gain
feedback linearization for the Y-stage in section 6. Section 7
describes the setup used for experiments. Comparison of
the imaging performance of a nanopositioner installed in a
commercial AFM in open and closed loop is presented in
section 8. Section 9 concludes the paper.

2. High-speed nanopositioner

As stated earlier, a piezoelectric tube nanopositioner typically
has low resonance frequency which limits the scanning
speed to a few hertz. For example, the piezoelectric tube
nanopositioner presented in [34] has a resonance frequency
of 840 Hz; thus, the scanning bandwidth is limited to around
8.5 Hz. It would take half a minute to scan an image of
256 × 256 pixel resolution. The processes occurring within
a fraction of a second require much higher scanning speeds.
One would not be able to extract adequate information about
a sample with fast dynamics from images generated with a
scan speed of 8.5 Hz. Flexure-based nanopositioners has been
shown to have much higher scanning speeds than piezoelectric
tube nanopositioners [20, 9, 25, 23, 21]. To design a compact
flexure-based nanopositioner which would replace an existing
piezoelectric tube nanopositioner in an AFM is a difficult task.
Manufacturing constraints and machining tolerances imposed
on the design (such as smallest available tool on the market)
make the design process for a compact scanner even more
challenging.

Figure 2 shows a compact serial-kinematic nanopo-
sitioner designed in-house to replace a piezoelectric tube
nanopositioner installed in an NT-MDT NTEGRA AFM. The
nanopositioner is designed such that its maximum diameter
is 45 mm and it can be installed in the space available for

the piezoelectric tube nanopositioner. The detailed design and
characterization of this compact high-speed nanopositioner
has been reported in [24, 27]. The Y-stage is built large
to accommodate the X-stage such that its operation is
not affected by the dynamics of the X-stage. To make
the nanopositioner compact, the X-stage is built with a
fixed–free arrangement [52] with flexures on one side of
the stage. Aluminum-7075 is used for manufacture of the
nanopositioner because of its high yield strength to weight
ratio [53, 23]. The nanopositioner is manufactured using
wire electro discharge machining (WEDM). To actuate the
X and Y stages with high acceleration, Noliac (SCMAP07
5 mm×5 mm×10 mm) piezoelectric stack actuators are used.
The Z-stage is built on the X-stage using a piezoelectric stack
actuator (Noliac SCMAP06 3 mm× 3 mm× 4 mm), which is
placed in a cavity on the X-stage. A plate flexure is designed
for the Z-stage to achieve a natural frequency of 100 kHz and
is screwed on top of the piezoelectric stack actuator. The travel
ranges for the nanopositioner are 8 µm and 5 µm along the
x and y directions respectively. The natural frequency of the
stage along the x-direction is 9.6 kHz and along the y-direction
is 7 kHz.

3. Identification

In this section, the experimental characterization of the
nanopositioner dynamics is presented. The nanopositioner is
interpreted as a linear system with two inputs and two outputs
Y(s) = G(s)U(s), where U(s) denotes the Laplace transform
of [vX, vY]

>, the voltage signals applied to the electrodes of
the piezoelectric stacks along the x and y directions, Y(s)
denotes the Laplace transform of [dX, dY]

> and

G(s) =

[
GXX(s) GXY(s)

GYX(s) GYY(s)

]
, (1)

the transfer function relating the inputs and the outputs.
To identify the linear models of these transfer functions,

small signal frequency response functions (FRFs) are
estimated. It should be noted that at small amplitudes
the nonlinear effects such as hysteresis can be considered
negligible. In figures 3(a) and (b), the magnitude and phase
responses of the individual FRFs of G(iω) are plotted in
blue. These FRFs were determined using an HP35670A dual
channel spectrum analyzer. A swept sine input of 50 mVpk
with a frequency range of 10 Hz to 20 kHz was applied
to drive the piezoelectric stack actuators along the X and
Y axes and the corresponding capacitive sensor responses
were recorded. Individual FRFs were computed by taking the
Fourier transform of the recorded data.

It is apparent from the plots that the nanopositioner has
a resonance at 6.05 × 104 rads s−1 (i.e., 9.62 kHz) along
the X axis and at 4.43 × 104 rads s−1 (i.e., 7.07 kHz) along
the Y axis. In addition to the resonant behavior, the phase
response appears to include a linear term (see the dotted
line in figure 3(b)), suggesting a time delay. In other words,
the phase plots suggest that the transfer-function matrix is
of the form G(s)e−sτ for some time delay τ > 0, with G(s)

3



Smart Mater. Struct. 23 (2014) 025030 S P Wadikhaye et al

0

Figure 3. (a) Magnitude responses of the FRFs relating the inputs and outputs. (b) Phase responses of the FRFs relating the inputs and
outputs (on linear scale). Plots in blue are the open loop responses and the plots in red represent the system identified with time delay.

Figure 4. Phase responses of the FRFs relating the inputs and
outputs. Plots in blue are the open loop responses and plots in red
represent the system identified without the time delay.

denoting a highly resonant finite order system. Figure 4 shows
the phase response of the resonant component. This plot is
generated by estimating the time delay τ , which was found to
be approximately 62 µs, and multiplying the individual FRF
data by eiωτ . Note that the time delay τ is the slope of the
dotted straight line in figure 3(b).

For controller design, only the diagonal terms GXX(s)
and GYY(s) of (1) are considered. The cross coupling terms
GXY(s) and GYX(s) are neglected. It is apparent from the
dashed–dotted plots in figures 3(a) and 4 that the resonant
parts of GXX(s) and GYY(s) can be satisfactorily modeled as
second order systems. The following models were estimated
for the resonant transfer functions using the sub-space
method [54]:

GXX(s) =
5.33× 108

s2 + 4800s+ 3.743× 109 , (2)

Table 1. Hysteresis measurements for the X- and Y-stages.

Axis
Max.
width (µm)

Disp.
range (µm) %

X 2.2 6.4 34
Y 1.2 4.1 29

GYY(s) =
1.897× 108

s2 + 1978s+ 1.972× 109 . (3)

In figures 3(a) and 4 the magnitude and phase responses
of the models (2) and (3) respectively are plotted with red
lines. A good fit can be observed. As the system also includes
a time delay τ = 62 µs, the transfer functions GXX(s) and
GYY(s) are multiplied by

T(s) =
s2
− 9.231× 104s+ 2.84× 109

s2 + 9.231× 104s+ 2.84× 109 , (4)

which is a second order Pade approximation of e−sτ .
Figure 4 shows the phase responses of the transfer functions
GXX(s)T(s) and GYY(s)T(s). The plots suggest that the
models fit the respective data sets with reasonable accuracy.

One of the disadvantages of using piezoelectric stack
actuators is the inherent nonlinearity due to hysteresis [19]. To
study the effect of hysteresis a 10 Hz triangular wave of 200 V
is applied to the X and Y axis actuators of the nanopositioner.
The response of the system is measured and plotted against
the input signals to generate the hysteresis loops as plotted
in figure 5. To quantify the hysteresis the maximum width of
the hysteresis curve is taken as the parameter expressed as the
percentage of the full range along the respective axis. Table 1
illustrates the amount of hysteresis along the X and Y axes.

4. IRC control design for the fast stage

In this paper an integral resonant controller (IRC) is designed
to damp the resonant modes. In [37, 34], IRCs have been
designed for damping resonant systems. Here, the IRC design
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Figure 5. Plots showing the hysteresis loop obtained by plotting the
input voltage versus the output displacement along the X and Y
axes.

procedure is extended to accommodate systems with time
delay. In the following a controller will be designed to damp
the resonant mode of GXX(s)T(s).

An IRC controller has the following structure:

C(s) =
K

s− Kd
, (5)

with K > 0 and d < 0. The reasons for setting d < 0 will
become apparent soon. Direct calculations would reveal that
the imaginary part of C(iω) is also strictly negative for ω > 0.
Note that positive feedback connection of GXX(s) and C(s)
leads to a closed loop transfer function

Gcl(s) ,
GXX(s) K

s−Kd

1− GXX(s) K
s−Kd

=
GXX(s)K

(s− Kd − KGXX(s))

=
GXX(s)K

s(
1− (GXX(s)+ d)K

s

) . (6)

Since the denominator of (6) is

R(s) =

(
1− (GXX(s)+ d)

K

s

)
, (7)

by setting d to be equal to any suitable negative real number
and varying K, one can formulate a root locus type procedure
to determine a set of closed loop poles, which are zeros of (7),
that impart good damping.

This procedure was used in [37, 34]. However, for
the root locus plot to be lying complexly in the left half
plane, both GXX(s) and C(s) have to be strictly negative
imaginary and G(0)C(0) < 1 [34]. Note that GXX(s) described
in equation (2) has a frequency response with an imaginary
part that is negative for all ω > 0,

GXX(iω) =
5.33× 108 (3.743× 109

− ω2
− i4800ω

)(
3.743× 109

− ω2
)2
+ (4800ω)2

. (8)

Here, the system that is to be controlled is GXX(s)T(s), which
is not negative imaginary. In figure 6(a), a Nyquist plot of
GXX(s)T(s) is presented. It can be inferred that GXX(s)T(s)
is negative imaginary in the intervals [0, ω1] and [ω2,∞),
where ω1 = 5.04×104 rads s−1 and ω2 = 6.69×104 rad s−1.
Meanwhile, in the interval [ω1, ω2] the system is not negative
imaginary. Therefore results pertaining to strictly negative
imaginary systems [55] cannot be applied.

In figure 6(b), a Nyquist plot of −GXX(iω)T(iω) is
presented. Note that −GXX(iω)T(iω) is negative imaginary
between [ω1, ω2], while it is bounded by a circle of radius
k1 = 0.67 in the frequency regions [0, ω1] and [ω2,∞).
In a recent publication [48], stability results corresponding
to systems that are negative imaginary in certain frequency
regions and have ‘small’ gain in other intervals have been
presented. It has been shown in [48] that, if a controller
C(s) is strictly negative imaginary and the plant G(s) violates
the negative imaginary property over certain intervals, say
[ωk, ωk+1], for k = 1, 2, . . . ,N, then the closed loop is stable
in positive feedback configuration if the following conditions
are met.

Figure 6. (a) Nyquist plot of GXX(iω)T(iω). (b) Nyquist plot of −GXX(iω)T(iω), along with a circle (dotted) of radius −0.7.

5



Smart Mater. Struct. 23 (2014) 025030 S P Wadikhaye et al

Figure 7. Root locus of R(s), obtained by varying K ≥ 0 with
d = −0.7.

(i) lims→∞G(s)C(s) = 0.
(ii) There exist constants K1 and K2 such that |G(0)| < K1,
|C(0)| < K2 and K1K2 < 1.

(iii) In the intervals [ωk, ωk+1] for k = 1, 2, . . . where G(iω)
is not negative imaginary both G(iω) and C(iω) must
be bounded, i.e., |G(iω)| < K1 and |C(iω)| < K2 for all
ω ∈ [ωk, ωk+1], for k = 1, 2, . . ..

Note that for an IRC controller

max
ω
|C(iω)| = C(0) =

−1
d
, (9)

which implies |d| > 1
k2
> k1 = 0.67. Therefore, |d| has to be

greater than 0.67. Here, we set d = −0.7, and plot the root
locus for

R(s) ,

(
1− (−GXX(s)T(s)+ d)

K

s

)
, (10)

by varying K, see figure 7. From the root locus plot, we choose
K = 3.2× 104, which implies that

C(s) =
3.2× 104

s+ 3.2× 0.7× 104 . (11)

In figure 8 the closed loop frequency response function,
with the above mentioned controller, is presented by a green
line. It is apparent from the plots that significant damping of
the resonances has been achieved for the chosen controller.

As mentioned earlier, an integral controller with gain K =
32 000 has been implemented and the closed loop frequency
response with the integral controller has been plotted with a
red line in figure 8.

5. Feedforward control for the fast stage

A brief explanation of inversion-based feedforward tech-
niques is presented in this section. An extensive review on
feedforward techniques is presented in [50]. The goal of any
inversion technique is to find the input u such that when fed
to a linear system with known dynamics GXX , it produces the

Figure 8. Frequency response for the X-stage. The plot in blue
shows the open loop response, the plot in green shows the response
of closed loop with IRC and the plot in red shows the closed loop
response with IRC+Integrator.

desired output yd [31, 50, 18]. In other words, it is desirable to
acquire a u such that

Yd(iω) = GXX(iω)U(iω), (12)

where U(iω) and Yd(iω) are Fourier transforms of u and the
desired trajectory yd respectively.

Direct inversion of plant dynamics is one of the methods
to achieve the feedforward control. This is a straightforward
technique where the system identified from the frequency
response function is inverted. In most cases, where the
bandwidth is not large, the time delay can be neglected.
However, in the case of high-speed nanopositioning where
the structural resonance is greater than 1 kHz, the phase drop
due to time delay is significant. In such cases GXX will have
non-minimum phase (NMP) zeros. Inversion of such a system
will result in an unstable system. If the time delay is neglected
in the inversion, the higher harmonics will be shifted by a
certain phase dictated by the time delay. Thus, the inversion
will not lead to the input u that produces the desired output yd.

A simpler and more effective approach is to construct the
input signals from Fourier series. During raster scans, the fast
stage of the nanopositioner tries to track a triangular signal.
The desired output of the stage is a triangular signal which in
Fourier series form can be written as

yd(t) =
∞∑

k=1

Ak sin(ωkt), (13)

where Ak =
8

π2k2 sin(πk
2 ) and ωk = 2πkf , with f being the

fundamental frequency of the triangular waveform. Thus, in
order to obtain the desired output yd(t), the input should be

u(t) =
∞∑

k=1

Ak

|GXX(iωk)|
sin(ωkt − φk), (14)

where φk = 6 GXX(iωk) and k = 1, 2, . . ..
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Figure 9. (a) Control strategy for X-stage, (b) control strategy for
Y-stage.

Here, the desired trajectory yd(t), and hence u(t), has
an infinite number of harmonics and is consequently not
band-limited. If the harmonics are limited to the frequencies
before resonance is reached, a precise inversion can be
achieved and would ease the inversion process. Also, if the
harmonic content in the inversion bandwidth of the reference
signal is limited, the sensitivity to modeling error can be
reduced [56]. Thus, equation (14) can be rewritten as

u(t) =
n∑

k=1

Ak

|GXX(iωk)|
sin(ωkt − φk), (15)

where n is the number of odd harmonics to be tracked. By
using this technique the original phase φk calculated from the
FRF is used to construct the input signal u(t).

It is shown in [57] that to achieve a scan speed of up to
10% of the resonance frequency, the number of harmonics
should be limited to nine or less. With nine harmonics, one
can achieve approximately 70% of the linear scan range.
Figure 8 shows that, for the fast stage of the nanopositioner,
the resonance is at 10 kHz with a tracking bandwidth of
up to 5 kHz. Hence, a triangular signal with a fundamental
frequency of up to 500 Hz with nine odd harmonics can be
approximated.

It is evident from figure 8 that the phase drop up to the
tracking bandwidth of 5 kHz is significant. By constructing a
feedforward input to the plant using equation (15) harmonics
of the fundamental frequency with the original phase and
magnitude are incorporated. Thus, an exact inverse of
the plant for the required harmonics can be implemented.
Figure 9(a) shows the control strategy for the X-stage.

6. High gain feedback linearization of hysteresis for
the slow stage

For a serial-kinematic nanopositioner the slow stage (the
Y-stage) tracks a slowly increasing ramp. The bandwidth
requirement here is 2n times less than that of the fast stage,
where n is the number of scan lines. For the slow stage
a high gain feedback control is sufficient to overcome the
effects of nonlinearities. However, the resonant modes with
low structural damping (or high quality factor) impose low
gain margins which restrict the application of higher gain in
the closed loop [51]. Low gains are in some cases insufficient
to improve the tracking performance of the system.

The resonant behavior of the slow stage can be
sufficiently suppressed by implementing a notch filter.
Suppression of resonant peaks increases the gain margins and
hence the tracking performance can be improved over the
bandwidth of interest. The structure of the notch filter is of
the form

Cnotch =
s2
+

d
cωn + ω

2
n

s2 + 1
cωn + ω2

n

, (16)

where ωn is the resonance frequency of the Y-stage, and
the coefficients d and c can be iterated to suppress the
effect of dominant resonant peaks. The coefficients d and c
were chosen to be 0.022 and 0.5 respectively. The resonance
frequency ωn was calculated from the FRF as 4.44 ×
104 rad sec−1. Figure 10 shows that the gain margin was

Figure 10. (a) Open loop frequency response for the Y-stage in blue; the green dashed plot represents the notch filter and the open loop
response of Cnotch + Plant is shown in red. A gain margin of 23 dB is indicated which is obtained after cascading the notch filter with the
stage. (b) Open loop frequency response for the Y-stage in blue; a closed loop Proportional+ Cnotch + Plant is shown in green.
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Figure 11. FPAA implementation of the control strategy.

improved from 0.007 to 23 dB. The notch filter along with a
high gain feedback of Kp = 20 000 was realized using Matlab
Simulink and a dSPACE rapid prototyping system, as shown

in figure 9(b). Figure 10(b) shows the open loop and closed
loop frequency responses which indicate a 0 dB magnitude
response for frequencies up to 1 kHz.

7. Experimental setup

In this section, the implementation of the control scheme
presented in the previous sections is discussed. The
nanopositioner was installed in an NT-MDT NTEGRA AFM
and was used to test the proposed control strategy. Three
piezoelectric stack actuators were used to actuate the stage at
high acceleration with large force. Noliac SCMAP07 (5 mm
× 5 mm× 10 mm, 380 nF) piezoelectric stack actuators were
used to actuate the X- and Y-stages, while a Noliac SCMAP06
(3 mm× 3 mm× 4 mm, 35 nF) was used to drive the Z-stage.
PiezoDrive PDL 200 external voltage amplifiers were used to
drive the piezoelectric stacks, each with a gain of 20. Two
ADE Technologies 8810/2804 capacitive sensors, with a gain
of 2.5 µm V−1, were used to measure the displacement of the
stage in the x and y directions.

The data acquisition system of the commercial NT-MDT
NTEGRA SPM used in the experiments has a limitation on
sampling rate. The maximum scan rate achievable is 31 Hz
for a 256 × 256 pixel resolution image. The scan rate can be
increased to a higher value but at the cost of the resolution,

Figure 12. Open loop scan performance of the nanopositioner for the scanning speed indicated at the top: blue lines represent the reference
signal, green lines indicate the output signals from the capacitive sensors converted to equivalent displacement and red lines represent the
tracking error.
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Figure 13. Closed loop scan performance without feedforward of the nanopositioner: blue lines represent the reference signal, green lines
indicate the output signals from the capacitive sensors converted to equivalent displacement and red lines represent the tracking error.

e.g. the scan rate can be increased to 62 Hz with a decrease in
resolution to 128 × 128 pixels. To overcome this limitation a
dSPACE-1103 rapid prototyping system is used with 80 kHz
sampling rate. With this system scan rates up to 200 Hz can
be reached with a resolution of 200× 200 pixels.

Also, the sampling rate provided by the rapid prototyping
system is insufficient for implementing the high bandwidth
controller in equation (11). The IRC scheme along with the
integral action was implemented using a field programmable
analog array (FPAA). The controller was realized on a
commercially available Anadigm Vortex (AN221K04) FPAA
development board. The FPAA is an integrated device which
contains interconnected configurable analog blocks (CABs).
These CABs can be used to configure analog circuits such
as filters. They consist of OPAMP circuitry with switching
capacitors which makes it possible to achieve switching
frequencies of around 15 MHz, eliminating the sampling
and quantization effects. Figure 11 shows a schematic of
the X-stage control implementation presented in figure 9(a)
on FPAA boards using Anadigm-2 software. The in-built
functions of Bilinear Filter, Integrator, Inverse Gain and
Inverse Sum were used to develop the controller. The
control strategy for the Y-stage shown in figure 9(b) was
implemented using a dSPACE rapid prototyping system and
Matlab/Simulink.

Images were obtained using the constant height contact
mode of the AFM.

8. Imaging and tracking performance

In this section the performance of the designed nanopositioner
is evaluated by installing it in the AFM and performing
high-speed scans. A MikroMasch TGZ01 calibration grating
was scanned. This grating has step features of 3 µm period
and 200 nm height. Images with a 6 µm×4 µm scan size with
a pixel resolution of 200×200 were recorded at 10 Hz, 50 Hz,
100 Hz, and 200 Hz scan rates. Scanned images for open
loop, closed loop and closed loop with feedforward control
are shown in figures 12, 13 and 14 respectively.

Figure 12 shows the open loop scans of the calibration
grating. Oscillations due to harmonics of the triangular signals
and the resonance frequency can be observed distinctly
at 100 Hz. At 200 Hz these oscillations are increased
which severely deteriorates the image. The difference in
the feature size can be observed in figures 12(e) to (h);
these discrepancies in the images are due to the presence
of hysteresis. The severity of hysteresis and oscillations is
evident from the x-direction signal plots shown in figures 12(i)
to (l).

Significant reduction in the oscillations and hysteresis can
be observed in figure 13 after implementing the controller
in closed loop along the X and Y axes. It is evident from
figures 13(a) to (d) that oscillations are suppressed by the
IRC. The high controller gain reduces the distortions due to
hysteresis significantly, see figures 13(e) to (h). Figures 13(i)

9
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Figure 14. Closed loop scan performance with feedforward of the nanopositioner: blue lines represent the reference signal, green lines
indicate the output signals from capacitive sensors converted to equivalent displacement and red lines represent the tracking error.

Table 2. RMS tracking error for a 6 µm scanning range.

Open loop
Closed loop
without FF

Closed loop
with FF

Frequency
(Hz) nm

% of scan
range nm

% of scan
range nm

% of scan
range

10 348.5 5.808 15.4 0.256 9 0.15
50 371.2 6.186 67.1 1.118 22.7 0.378

100 415.5 6.925 132.3 2.205 31.6 0.526
200 488.5 8.141 267.8 4.463 61.5 1.025

to (l) show that the tracking performance has improved.
However, the presence of time delay still hampers the tracking
performance.

When the feedforward control is integrated with feedback
control the performance is further improved. No considerable
differences are observed in the image quality shown in
figures 14(e) to (h). The tracking performance is improved,
which is evident from the x-direction signal plots in
figures 14(i) to (l). These clearly show that the time delay has
been compensated using the feedforward control.

To evaluate the tracking performance of the three cases,
i.e. open loop, closed loop and closed loop with feedforward
control, table 2 lists the corresponding root mean square error
erms and the percentage error of the total scan range (6 µm).

It is clear from table 2 that with the IRC and integral
action in closed loop, good tracking performance is achieved
at low speed (erms(%) = 0.256 at 10 Hz) compared to the

open loop tracking (erms(%) = 5.808 at 10 Hz). However,
at high speeds the effect of time delay becomes significant
and the phase lag contributes greatly to the tracking error
(erms(%) = 4.463 at 200 Hz). Although the nonlinearities are
minimized and vibration effects are suppressed the percentage
error is significant. With the combined feedforward and
feedback controllers the phase lag is reduced and good
tracking (erms(%) = 1.025 at 200 Hz) is achieved. The results
presented above are comparable to those presented in [21].

9. Conclusions and future work

The field of nanotechnology is progressing, posing multidisci-
plinary research problems for scientists. High-speed imaging
is in demand, which requires expertise in mechanical design
for a high-speed nanopositioner and efficient control design
to enhance the imaging performance. In this paper, a compact

10
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serial-kinematic nanopositioner built in-house was considered
for experimentation. The objective was to achieve high-speed
scanning with nanoscale accuracy. The performance of the
nanopositioner was hampered by (a) vibrations which are
a consequence of the lightly damped resonant structure
of the nanopositioner, (b) nonlinearity due to hysteresis
from the piezoelectric actuator and (c) time delay due to
the capacitive sensor electronics. An IRC was designed to
sufficiently damp the resonant mode of the nanopositioner
and increase the gain margins. The stability conditions for the
IRC were extended to accommodate resonant time delayed
systems such as the nanopositioning stage. Integral action
and feedforward controllers were designed to improve the
tracking performance. Increase in the scanning speed up to
200 Hz was reported. The scanning results show a remarkable
improvement in the performance of the nanopositioner with
the proposed control strategy. The combined IRC and integral
action substantially mitigate the effects of vibration and
hysteresis. This system when cascaded with feedforward
control further improves the tracking performance of the
system by eliminating the time delay. The RMS tracking error
values obtained indicate the magnitude of accuracy achieved
with this control strategy.

The next bottleneck which limits the scan speed of the
AFM is the limited vertical feedback control bandwidth.
Future objectives include development and implementation of
control to increase the gain margin of the vertical feedback
loop for effective feature tracking.
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