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Abstract

We study the lowest achievable mean square estimation error in two limiting optimal linear filtering prob-
lems. First, when the intensity of the process noise tends to zero, the lowest achievable mean square estima-
tion error is a function of the unstable poles of the system. Second, when the intensity of the measurement
noise tends to zero, the lowest achievable mean square estimation error is a function of the nonminimum
phase zeros of the system. We link these results with Bode integral characterizations of performance limita-
tions in linear filtering.

Keywords: Optimal Linear Filtering, Performance Limits, Nonminimum Phase Zeros, Unstable Poles, Bode
Integrals, Singular Perturbations.
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1 Introduction

The analysis of feedback limitations using analytic function theory was initiated by Bode in the 1940’s and
is of continuing interest Bode [1945], Francis and Zames [1984], Freudenberg and Looze [1985], Middleton
[1991], Chen [1995]. In recent studies of performance limitations in filtering, Bode and Poisson integrals were
established for functions representing sensitivity of the estimation error to process and measurement noise
Goodwin et al. [1995], Seron et al. [1997a].

An alternative approach is to study the best achievable performance of optimal control when the cost of
control tends to zero (cheap control) Chang [1961], Kalman [1964], Kwakernaak and Sivan [1972], Francis
[1979], Shaked [1980], Qiu and Davison [1993]. This approach was recently linked to Bode integrals and
extended to nonlinear systems Seron et al. [1997b].

In this paper we derive performance limits in optimal filtering and establish their links with Bode inte-
grals. By letting the intensity of either the process noise or the measurement noise tend to zero [Bryson and
Johansen, 1965, Krener, 1986, Aganovic et al., 1995, as in], we show that these performance limits are imposed
by the unstable poles and nonminimum-phase (NMP) zeros of the transfer function from the process noise
input to the measurements.

For vanishing process noise, the lowest achievable mean square (MS) estimation error must be nonzero
if the system is unstable. In particular, when estimating the specific combination of states that form the
measurements, we show that this error is an explicit function of the unstable poles, further characterized
with a Bode integral.

For vanishing measurement noise, the lowest achievable MS estimation error must be nonzero if the sys-
tem is NMP Kwakernaak and Sivan [1972]. We show that this error corresponds to that achieved by a reduced
filtering problem for the unstable zero-dynamics of the system. In particular, for the problem of estimating a
slowly-varying input to the system, the lowest achievable MS error is an explicit function of the NMP zeros,
also characterized with a Bode integral.

Our filtering problem is the optimal MS estimation Kalman and Bucy [1961] of the state x of the linear
time-invariant system

ẋ(t) = Ax(t) + Bw(t), x ∈ Rn, w ∈ Rm ,

y(t) = Cx(t) + v(t) , y ∈ Rm,
(1)

where B and C are full rank matrices and w and v are uncorrelated zero-mean Gaussian white noises with
intensities Σw and Σv, that is,

E{w(t)} = 0 , E{w(t)wT(τ)} = Σw δ(t − τ) ,

E{v(t)} = 0 , E{v(t)vT(τ)} = Σv δ(t − τ) .

The matrices Σw and Σv are assumed constant and positive definite. The initial state x(0) is a Gaussian
random vector with mean x̄(0) and covariance Σ0, uncorrelated with v and w.

The steady-state optimal filter for the system (1) is

˙̂x(t) = Ax̂(t) + QCTΣ−1
v [y(t) − Cx̂(t)] , x̂(0) = x̄(0) , (2)

where Q = QT is a positive semidefinite solution of the algebraic Riccati equation (ARE)

AQ + QAT + BΣwBT − QCTΣ−1
v CQ = 0 . (3)

The matrix Q, which is unique if (1) is stabilizable and detectable, is the asymptotic variance of the estimation
error x̃ = x − x̂ , that is

lim
t!1E{x̃(t)x̃T(t)} = Q .

The optimal filter (2) minimizes the MS estimation error

lim
t!1E{x̃T(t)x̃(t)} = trace Q .

In the remaining of the paper we use the notation of this section: for a state variable x, x̄(0) denotes the
mean value of the initial state x(0); x̂ denotes the estimate of x and x̃ the corresponding estimation error.
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2 Performance Limits Under Small Process Noise

2.1 Limiting Properties

We first investigate the properties of the optimal filter when the intensity of the process noise w becomes
arbitrarily small.

Assumption 1.

(i) The system (1) is stabilizable and detectable.

(ii) The matrix A in (1) has no eigenvalues on the imaginary axis.

(iii) The intensities of the noises w and v are

Σw = ε2I , and Σv = I , (4)

where ε > 0 is small. ◦
Conditions (i) and (ii) are necessary and sufficient for the filter (2) to be asymptotically stable in the limit

as w vanishes. Because of (ii), a modal decomposition performed on (1) brings it to the form (Figure 1)
[
ẋ1

ẋ2

]
=

[
A1 0

0 A2

] [
x1

x2

]
+

[
B1

B2

]
w ,

y =
[
C1 C2

] [
x1

x2

]
+ v ,

(5)

where A1 is Hurwitz and A2 is antistable (that is −A2 is Hurwitz). Condition (i) implies that (A2, B2, C2) is
controllable and observable. In the form (5), the eigenvalues of A2 are the unstable poles of the system, that
is, those of the transfer function from w to y.
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Figure 1: Modal decomposition of the system (5)

Lemma 2.1 (Error Variance under No Process Noise). Under Assumption 1, the variance of the estimation
error achieved by the optimal filter for (5) satisfies

lim
ε!0

lim
t!1E

{[
x̃1(t)
x̃2(t)

] [
x̃1(t)
x̃2(t)

]T
}

=

[
0 0

0 Q2

]
, (6)

and the lowest achievable MS estimation error is

lim
ε!0

lim
t!1E

{[
x̃1(t)
x̃2(t)

]T [
x̃1(t)
x̃2(t)

]}
= trace Q2 , (7)

where Q2 is the positive definite solution of the ARE

A2Q2 + Q2AT
2 = Q2CT

2C2Q2 . (8)
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Proof. Using (5) and (4) in (3) we obtain

[
A1 0

0 A2

]
Q + Q

[
A1 0

0 A2

]T

+ ε2

[
B1BT

1 B1BT
2

B2BT
1 B2BT

2

]
− Q

[
CT

1C1 CT
1C2

CT
2C1 CT

2C2

]
Q = 0 .

We seek its solution Q = QT in the form of the power series in ε

Q =

[
ε2Q1 + O(ε3) ε2Q3 + O(ε3)

∗ Q2 + O(ε)

]
.

A straightforward calculation shows that Q1, Q2 and Q3 satisfy

ε2
(
A1Q1 + Q1AT

1 + B1BT
1

)
+ O(ε4) = 0 ,

ε2
(
A1Q3 + Q3AT

2 + B1BT
2 − Q1CT

1C2Q2 − Q3CT
2C2Q2

)
+ O(ε4) = 0 ,

A2Q2 + Q2AT
2 − Q2CT

2C2Q2 + O(ε2) = 0 .

After setting ε = 0 we see that the only nonzero element of Q is Q2, the positive definite solution of (8), which
proves (6), (7), (8). ¤

The matrix Q2 in (6) is the variance that would result from the filtering problem for

ẋ2 = A2x2 ,

y2 = C2x2 + v ,

the unstable subsystem in (5) (Figure 1). Hence, only the unstable modes of the system contribute to the MS
estimation error (trace Q2) when the process noise vanishes.

The optimal filter (2) takes the form
[ ˙̂x1

˙̂x2

]
=

[
A1 0

0 A2

] [
x̂1

x̂2

]
+

[
ε2

(
Q1CT

1 + Q3CT
2

)
Q2CT

2 + ε2QT
3CT

1

] (
y − C1x̂1 − C2x̂2

)
,

x̂1(0) = x̄1(0) ,

x̂2(0) = x̄2(0) ,

and, in the limit as ε → 0,
[ ˙̂x1

˙̂x2

]
=

[
A1 0

−Q2CT
2C1 −Q2AT

2Q−1
2

] [
x̂1

x̂2

]
+

[
0

Q2CT
2

]
y ,

x̂1(0) = x̄1(0) ,

x̂2(0) = x̄2(0) ,
(9)

where we have used A2 − Q2CT
2C2 = −Q2AT

2Q−1
2 , which follows from (8). We see from (9) that the eigenval-

ues of the optimal filter converge, as ε → 0, to the stable eigenvalues of (5) and to the mirror image (with respect
to the imaginary axis) of the unstable poles of the system [Kwakernaak and Sivan, 1972, Theorem 4.12].

As the process noise vanishes, the filtering problem becomes that of estimating the noise-free state of the
system (5) using noisy measurements. Expression (9) shows that the filter for the stable subsystem ẋ1 = A1x1

is disconnected from the measurements. However, the filter for the unstable subsystem ẋ2 = A2x2 must
continue to be driven by the noisy measurements due to the requirement of stability of the filter imposed
by the optimization problem. Under this requirement, the lowest MS estimation error is achieved when the
eigenvalues of the filter for the unstable subsystem are located at the mirror image of the unstable poles of
the system (5).

2.2 A Bode Integral for the Estimation of the Noise-Free Output

For the problem of estimating ψ = C1x1 + C2x2 , as the noise-free “output” of the system (5) (Figure 1), the
optimal filter performance is determined by the system unstable poles.

Theorem 2.2 (Performance Limits Imposed by Unstable Poles). For the system (5) under Assumption 1, the
lowest achievable MS error in the estimation of ψ = C1x1 + C2x2 is

lim
ε!0

lim
t!1E

{
ψ̃(t)Tψ̃(t)

}
= 2

n2∑

i=1

βi , (10)

where β1, . . . , βn2
are the system unstable poles.
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Proof. Using (7) and (8) we have

lim
ε!0

lim
t!1E

{
ψ̃(t)Tψ̃(t)

}
= trace Q2CT

2C2

= trace Q
1/2
2 CT

2C2Q
1/2
2

= 2 trace A2 = 2

n2∑

i=1

βi .

¤

Theorem 2.2 shows that the lowest achievable MS estimation error in the problem of estimating the noise-
free output of the system (5) is precisely quantified as twice the sum of the system unstable poles.

This theorem is dual to the feedback control result that characterizes the right hand side of (10) as the
optimal cost achieved by the minimum energy control transferring the system (5) to rest from the initial con-
dition originating from a unit impulse at the input Seron et al. [1997b]. The optimal cost for this minimum
energy problem is equal to a feedback invariant quantity that involves the well-known Bode integral for the
sensitivity function of a unitary feedback loop.

Bode integral formulae have also been obtained for transfer functions that represent sensitivity properties
of filtering systems Goodwin et al. [1995], Seron et al. [1997a]. We now connect one of these formulae with the
lowest achievable MS error in the estimation of the noise-free output ψ of the system (5) in the single-input
single-output (SISO) case.

Theorem 2.3 (Bode Invariant for the Estimation of the Noise-Free Output). Let G be the transfer function
from w to ψ = C1x1 + C2x2 in (5), and F be the transfer function of any stable, strictly proper filter mapping
the system output y to the estimate ψ̂ = C1x̂1 +C2x̂2. Assume that F is such that the estimation error transfer
function (1 − F)G is stable and minimum phase. Then

1

π

∫1
−1 log |1 − F(jω)|dω + lim

s!1 sF(s) = lim
ε!0

lim
t!1E

{
ψ̃2(t)

}
, (11)

where ψ̃ is the error in the optimal estimation of ψ in (5), (4).

Proof. Since (1− F)G is stable and minimum phase, the set of NMP zeros of 1− F is equal to the set of unstable
poles of G. The result then follows from (10) and Theorem 8.2.4 of Seron et al. [1997a]. ¤

We observe that 1 − F is the transfer function from ψ to ψ̃ (Figure 2). Hence, |1 − F(jω)| quantifies the
performance of the filter: the smaller this magnitude is over the frequency range where the spectrum of ψ is
concentrated, the better the estimate ψ̂ “tracks” the signal ψ. In this sense, 1−F is a filtering sensitivity function
dual to the sensitivity function S of the unitary feedback control loop [Seron et al., 1997a, § 7.2].

b -

b
?i i b-

6
- - -G

 w
+

+ y
v

- ̂  ̃

+
F

Figure 2: Estimation of the noise-free output

The first term on the left-hand side (LHS) of (11) is a Bode sensitivity integral which represents the area
subtended by the plot of |1−F(jω)| on a logarithmic scale. A negative value for this integral indicates that the
contribution to this area of the frequency ranges where there is filtering sensitivity attenuation (|1−F(jω)| < 1)
must be greater than that of the ranges where there is sensitivity amplification (|1−F(jω)| > 1), and vice versa.

The second term on the LHS of (11) is equal to the slope of the step response of the filter F at time t = 0,
which is finite and nonzero if and only if F has relative degree one.

Any filter F satisfying the conditions of Theorem 2.3 must satisfy (11), which equals twice the sum of the
unstable poles of the system. We may thus view (11) as a filtering sensitivity invariant in the sense that the
terms on its LHS must be traded-off against each other to add to a quantity fixed by the system and independent
of the filter parameters. Theorem 2.3 states that this filtering invariant is the MS estimation error achieved by
the optimal filter when there is no process noise.

When F is the optimal filter estimating ψ = C1x1 + C2x2 in (5), (4), the sensitivity invariant (11) gives the
following closed-form expression for the MS estimation error.
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Corollary 2.4 (Optimal Mean-Square Error in the Estimation of the Noise-Free Output). The MS error in
the estimation of ψ = C1x1 + C2x2 in (5), (4) is

lim
t!1E

{
ψ̃2(t)

}
=

1

2π

∫1
−1 log

[
1 + ε2|G(jω)|2

]
dω + 2

n2∑

i=1

βi . (12)

Proof. From (2), the transfer function of the optimal filter for the estimation of ψ in (5), (4) is F(s) = C(sI −
A + QCTC)−1QCT. Hence,

lim
s!1 sF(s) = CQCT = lim

t!1E
{
ψ̃2(t)

}
(13)

and

|1 − F(jω)|2 = |1 + C(jωI − A)−1QCT |−2

= (1 + ε2|G(jω)|2)−1 , (14)

where (14) follows from the application of the Return Difference Identity 1+ε2|G(jω)|2 =
∣∣1 + C(jωI − A)−1QCT

∣∣2
[Anderson and Moore, 1990, § 5.2]. Using (10), (13) and (14) in (11) yields (12). ¤

For ε = 1, the expression (12) was obtained in its control dual form by Anderson and Mingori [1985], who
extended to unstable G a formula originally derived in Wiener filtering by Yovits and Jackson [1955].

Since, from (14),

1

2π

∫1
−1 log

[
1 + ε2|G(jω)|2

]
dω = −

1

π

∫1
−1 log |1 − F(jω)|dω ,

the formula (12) shows that, for each fixed ε > 0, the Bode sensitivity integral represents the degradation in
performance (as measured by the MS estimation error) with respect to its best achievable given by (10).

3 Performance Limits Under Small Measurement Noise

3.1 Limiting Properties

We now study the properties of the optimal filter when the intensity of the measurement noise is arbitrarily
small, under the following assumption.

Assumption 2.

(i) The system (1) is stabilizable and detectable.

(ii) The system (1) has relative-degree one: rank CB = m.

(iii) All the zeros of C(sI − A)−1B are nonminimum phase.

(iv) The intensities of the noises w and v are

Σw = I , and Σv = ε2I , (15)

where ε > 0 is small. ◦
Assumptions (ii) and (iii), which represent the case with the maximum number of NMP zeros, are made

only for simplicity of exposition and may be removed.
Let M0 be a basis of the left null-space of the input matrix B (that is, M0B = 0). Then, because rank CB =

m, the change of coordinates ξ = Cx and z = M0x is a similarity transformation which brings (1) to the form
[
ξ̇

ż

]
=

[
A1 C0

B0 A0

] [
ξ

z

]
+

[
B1

0

]
w ,

y =
[
I 0

] [
ξ

z

]
+ v ,

(16)
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This form is of interest because it displays the zeros of C(sI − A)−1B (the transfer function from w to y in
(1)) as the eigenvalues of A0. When v = 0 (so y = ξ), (16) can be seen to consist of two systems in feedback
interconnection: the zero dynamics subsystem described by ż = A0z + B0y, with input y and output C0z,
and the output subsystem ẏ = A1y + C0z + B1w, with input C0z + B1w and output y (Figure 3). The triple
(A0, B0, C0) is controllable and observable because (16) is stabilizable and detectable and A0 is antistable by
(iii), Assumption 2.
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Figure 3: Output/zero-dynamics subsystem interaction in the system (16)

Lemma 3.1 (Error Variance under No Measurement Noise). Under Assumption 2, the variance of the esti-
mation error achieved by the optimal filter for (16) satisfies

lim
ε!0

lim
t!1E

{[
ξ̃(t)
z̃(t)

] [
ξ̃(t)
z̃(t)

]T
}

=

[
0 0

0 Q0

]
, (17)

and the lowest achievable MS estimation error is

lim
ε!0

lim
t!1E

{[
ξ̃(t)
z̃(t)

]T [
ξ̃(t)
z̃(t)

]}
= trace Q0 , (18)

where Q0 is the positive definite solution of

A0Q0 + Q0AT
0 = Q0CT

0(B1BT
1)−1C0Q0 . (19)

Proof. Using (16) and (15) in (3) we obtain the ARE

[
A1 C0

B0 A0

]
Q + Q

[
A1 C0

B0 A0

]T

+

[
B1BT

1 0

0 0

]
−

1

ε2
Q

[
I 0

0 0

]
Q = 0 . (20)

We seek its solution Q = QT in the form of the power series

Q =

[
εQ1 + ε2Q̌1 + O(ε3) ∗
εQ2 + ε2Q̌2 + O(ε3) Q0 + O(ε)

]
. (21)

Its leading entries Q0, Q1, Q2 are obtained explicitly from the substitution of (21) into (20):

B1BT
1 + O(ε) = Q2

1 , (22)
C0Q0 + O(ε) = Q1QT

2 , (23)
A0Q0 + Q0AT

0 + O(ε) = Q2QT
2 . (24)

When ε = 0, (22) gives Q1 = (B1BT
1)1/2 and (23) gives Q2 = Q0CT

0(B1BT
1)−1/2. The substitution of Q1 and

Q2 in (24) shows that Q0 is a solution of (19); since (A0, B−1
1 C0) is observable, this solution is unique and

positive definite. The expressions for Q̌1 and Q̌2 are found similarly by equating O(ε) terms, not shown in
(22), (23), (24). We conclude that Q is given by

Q =

[
ε(B1BT

1)1/2 + ε2Q̌1 + O(ε3) ∗
εQ0CT

0(B1BT
1)−1/2 + ε2Q̌2 + O(ε3) Q0 + O(ε)

]
. (25)

Identities (17) and (18) then follow from (25) by letting ε → 0. ¤
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We observe that if A0 were Hurwitz then Q0 = 0 would be the nonnegative definite solution of (19), and
the error variance achieved by the optimal filter as ε → 0 would be zero. In our case A0 is antistable, and
hence the error variance is positive definite.

In the limit when the measurement noise vanishes, v = 0, the state ξ = y is exactly measured. Therefore, in
the output system ξ̇−A1ξ = C0z+B1w we can treat y0 = ξ̇−A1ξ as the noisy measurement y0 = C0z+B1w

of the state of the unstable zero dynamics subsystem (Figure 3). This is equivalent to the filtering problem for
the system

ż = A0z ,

y0 = C0z + B1w .
(26)

The variance of the estimation error corresponding to this filtering problem is Q0, the positive definite solu-
tion of (19). We see that the limiting estimation problem (26) is characterized by the output pair (A0, C0) of
the zero-dynamics subsystem with the driving term B0ξ treated as a known input.

Hence, only the unstable zero dynamics of the system contribute to the MS estimation error (trace Q0)
when the measurement noise vanishes. In other words, the problem reduces to that of estimating the state z

of the zero-dynamics subsystem given the noisy measurement y0 obtained from the output subsystem.
This result is dual to the following limiting property for the cheap control problem for (16): the lowest

achievable cost for the cheap control is the optimal cost achieved by the minimum energy problem for the
input pair (A0, B0) of the zero-dynamics subsystem Seron et al. [1997b].

3.2 Optimal Filter

By dualizing the cheap control results, Kwakernaak and Sivan [1972, Theorem 4.12] showed that, in the limit
as ε → 0, the eigenvalues of the optimal filter which do not converge to infinity converge to the system
minimum phase zeros and to the mirror image of the NMP zeros. We will recover this result using singular
perturbation analysis.

Note first that, since Σv = ε2I, we can express y in (16) as

y = ξ + εv1 , (27)

where v1 is a zero-mean Gaussian white noise with intensity E{v1(t)v1
T(τ)} = I δ(t − τ). With Q from (25),

the optimal filter (2) is a singularly perturbed system
[

˙̂ξ
˙̂z

]
=

[
A1 C0

B0 A0

] [
ξ̂

ẑ

]
+

1

ε

[
(B1BT

1)1/2 + εQ̌1 + O(ε2)

Q0CT
0(B1BT

1)−1/2 + εQ̌2 + O(ε2)

] (
ξ + εv1 − ξ̂

)
,

ξ̂(0) = ξ̄(0) , ẑ(0) = z̄(0) ,

(28)

but, because the matrix [
(B1BT

1)1/2

Q0CT
0(B1BT

1)−1/2

]

is singular, it is not in the standard form Kokotović et al. [1986]. Noting that B1BT
1 is nonsingular, we bring

(28) into the standard form via the change of variable η = ẑ − Q0CT
0(B1BT

1)−1ξ̂ with η(0) = η̄(0) , z̄(0) −
Q0CT

0(B1BT
1)−1ξ̄(0) . This yields

[
ε ˙̂ξ
η̇

]
=

[
−(B1BT

1)1/2 0

Bη − Kη −Q0AT
0Q−1

0

] [
ξ̂

η

]
+

[
(B1BT

1)1/2

Kη

] (
ξ + εv1

)
+ O(ε) ,

ξ̂(0) = ξ̄(0) , η(0) = η̄(0) ,

(29)

where Bη = B0−Q0[CT
0(B1BT

1)−1A1+AT
0CT

0(B1BT
1)−1], Kη = Q̌2−Q0CT

0(B1BT
1)−1Q̌1, and where we have used

A0 − Q0CT
0(B1BT

1)−1C0 = −Q0AT
0Q−1

0 , which follows from (19). The matrices −(B1BT
1)1/2 and −Q0AT

0Q−1
0

are Hurwitz, and hence (29) satisfies the assumptions of Theorem 1 in Khalil and Gajic [1984], which shows
that the solutions of the system

[
ε ˙̂ξ0

η̇0

]
=

[
−(B1BT

1)1/2 0

Bη − Kη −Q0AT
0Q−1

0

] [
ξ̂0

η0

]
+

[
(B1BT

1)1/2

Kη

]
ξ ,

ξ̂0(0) = ξ̄(0) ,

η0(0) = η̄(0) ,
(30)
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approximate the exact solutions of (29) in the sense that the variance of ξ̂−ξ̂0 is O(ε) and the variance of η−η0

is O(ε2). In the noise-free system (30), the stability of the fast subsystem matrix −(B1BT
1)1/2 guarantees that,

during a fast (“boundary layer”) transient, ξ̂0 converges towards its quasi-steady state ξ̂0 = ξ. Substitution
of ξ̂0 = ξ in the η0-subsystem of (30) shows that the quasi-steady state of the slow variable η0 is governed by
η̇0 = −Q0AT

0Q−1
0 η0 + Bηξ . Thus, as the noise εv1 vanishes, the filter (28) reduces to

ξ̂ = ξ ,

η̇ = −Q0AT
0Q−1

0 η + Bηξ ,

ẑ = η + Q0CT
0(B1BT

1)−1ξ .

(31)

The eigenvalues of −Q0AT
0Q−1

0 are the mirror image of the eigenvalues of A0, which are the NMP zeros of (16).
It follows that the corresponding n − m eigenvalues of the optimal filter converge, as ε → 0, to the mirror
image of the NMP zeros of the system and the remaining m eigenvalues tend to infinity.

The optimal filter for (16) with zero measurement noise was originally derived by Bryson and Johansen
[1965] without a recourse to the above limiting argument. By differentiating the output y they obtain a new
measurement yd = ẏ and then construct the optimal filter for the system

[
ξ̇

ż

]
=

[
A1 C0

B0 A0

] [
ξ

z

]
+

[
B1

0

]
w ,

yd =
[
A1 C0

] [
ξ

z

]
+ vd ,

(32)

where vd is zero-mean Gaussian white noise of intensity B1BT
1. Noting that w and vd in (32) are correlated

with cross-covariance BT
1, one can verify that the error variance achieved by filtering (32) is the right hand

side of (17).
The optimal filter for (32), with state (ξ̂, ẑ), is driven by yd = ẏ. Differentiation of the output can be

avoided in the following way Bryson and Johansen [1965]. First, since ξ is measured, take ξ̂ = ξ . Then the
change of coordinates η = ẑ − Q0CT

0(B1BT
1)−1ξ again yields the filter (31).

Hence, the filters obtained from the two approaches coincide. Note, however, that when the filter (31) is
obtained from (32) its states are continuous functions of time for t ≥ 0 Moylan [1974]. On the other hand,
when (31) is obtained from the small-noise optimal filter (28), singular perturbation theory shows that the
state ξ̂ has a boundary-layer jump at t = 0 to accommodate different initial conditions of ξ̂ and ξ . As
suggested by Moylan [1974], this jump can be avoided if, instead of taking ξ̂(0) equal to ξ̄(0), we select it to
be O(ε)-close to ξ(0), which is physically possible since ξ is measured with O(ε) noise.

3.3 Estimation of a Random-Walk Input

A filtering problem of practical relevance is that of estimating a slowly-varying input disturbance. Such a
disturbance may be modeled as integrated white noise [Kwakernaak and Sivan, 1972, p. 347], that is “random
walk”. The system (16) with a random-walk input disturbance ψ is




ξ̇

ψ̇

ż


 =




A1 B1 C0

0 0 0

B0 0 A0







ξ

ψ

z


 +




0

I

0


 w ,

y =
[
I 0 0

]



ξ

ψ

z


 + v ,

(33)

where w and v are zero-mean Gaussian white noises of intensities given by (15). Defining a new variable
ζ = B1ψ + C0z, we rewrite (33) as




ξ̇

ζ̇

ż


 =




A1 I 0

C0B0 0 C0A0

B0 0 A0







ξ

ζ

z


 +




0

B1

0


 w ,

y =
[
I 0 0

]



ξ

ψ

z


 + v ,

(34)

From the optimal filter for (34), (15), an estimate for the disturbance ψ is computed as ψ̂ = B−1
1 (ζ̂ − C0ẑ).
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Theorem 3.2 (Performance Limits Imposed by NMP Zeros). Assume that the system (34) is stabilizable and
detectable, with B1 invertible and A0 antistable. Then the filtering problem for (34), (15) has the following
limiting properties:

(i) The variance of the optimal estimation error satisfies

lim
ε!0

lim
t!1E








ξ̃(t)

ζ̃(t)
z̃(t)







ξ̃(t)

ζ̃(t)
z̃(t)




T
 =




0 0 0

0 0 0

0 0 Q0


 , (35)

where Q0 is the positive definite solution of

A0Q0 + Q0AT
0 = Q0AT

0CT
0(B1BT

1)−1C0A0Q0 . (36)

(ii) The lowest achievable MS error in the estimation of the input disturbance ψ is

lim
ε!0

lim
t!1E

{
ψ̃(t)Tψ̃(t)

}
= 2

n−m∑

i=1

1

αi
, (37)

where α1, . . . , αn−m are the NMP zeros of the system.

Proof. The ARE corresponding to the optimal filter for (34) is



A1 I 0

C0B0 0 C0A0

B0 0 A0


 Q + Q




A1 I 0

C0B0 0 C0A0

B0 0 A0




T

+




0 0 0

0 B1BT
1 0

0 0 0


 =

1

ε2
Q




I 0 0

0 0 0

0 0 0


 Q ,

whose solution

Q =




ε3/2
√

2(B1BT
1)1/4 + O(ε2) ∗ ∗

ε (B1BT
1)1/2 + ε3/2 Q̌2 + O(ε2)

√
2ε (B1BT

1)3/4 + O(ε) ∗
εK(B1BT

1)1/2 + ε3/2 Q̌3 + O(ε2)
√

2ε K(B1BT
1)3/4 + O(ε) Q0 + O(

√
ε)


 , (38)

where K = Q0AT
0CT

0(B1BT
1)−1 and Q0 is the positive definite solution of (36), is found following the same

steps as in the proof of Lemma 3.1. Then (35) follows from (38) by taking the limit as ε → 0. To derive (37) we
rewrite (36) as

Q
1/2
0 AT

0
−1

Q
−1/2
0 + Q

−1/2
0 A−1

0 Q
1/2
0 = Q

1/2
0 CT

0(B1BT
1)−1C0Q

1/2
0 . (39)

Then

lim
ε!0

lim
t!1E

{
ψ̃(t)Tψ̃(t)

}
= trace Q0CT

0BT
1

−1
B−1

1 C0

= trace Q
1/2
0 CT

0BT
1

−1
B−1

1 C0Q
1/2
0

= 2 trace A0
−1 = 2

n−m∑

i=1

1

αi
.

¤

Theorem 3.2 shows that there exists a nonzero MS error in the estimation of a random-walk input to a
NMP system. This error is an explicit function of the NMP zeros, independent of the system realization. This
result is dual to the Qiu-Davison formula [Qiu and Davison, 1993, Theorem 3], which states that the lowest
achievable cost for the cheap control problem of regulating the output y of (16) to a constant setpoint r is
1
2rTHr, where H is an Hermitian matrix whose trace equals (37).

We next derive the optimal filter estimating the disturbance ψ = B−1
1 (ζ − C0z) in (34). We will see that,

since the transfer function from w to y in (34) has relative-degree two, the optimal filter becomes improper in
the limit when ε → 0 Francis [1979].

For ε > 0, the optimal filter of the form (2) for the system (34) is



˙̂ξ
˙̂ζ
˙̂z


 =




A1 I 0

C0B0 0 C0A0

B0 0 A0







ξ̂

ζ̂

ẑ


 +

1

ε




√
2ε (B1BT

1)1/4 + O(ε)

(B1BT
1)1/2 + Q̌2

√
ε + O(ε)

K(B1BT
1)1/2 + Q̌3

√
ε + O(ε)


 (

ξ + εv1 − ξ̂
)
,

ξ̂(0) = ξ(0) + O(ε) , ζ̂(0) = ζ̄(0) , ẑ(0) = z̄(0) ,

(40)
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obtained using (27) and (38), and selecting the initial condition ξ̂(0) to be O(ε)-close to ξ(0), as pointed
out in Section 3.2. To study (40) in the limit as ε → 0, it is convenient to introduce the error variables
σ = (ξ − ξ̂)/

√
ε = ξ̃/

√
ε and η = (z̃ − Kζ̃). We observe that σ is well-defined because σ(0) is O(

√
ε). Using

(34) and (40), and noting that z̃(0) = z(0) − ẑ(0), we find that the dynamics of σ, ζ̃ and η are governed by




√
εσ̇

√
ε ˙̃ζ
η̇


 =




−
√

2
(
B1BT

1

)1/4
I 0

−
(
B1BT

1

)1/2
0 0

−Q̌3 + KQ̌2 (I − KC0)A0K (I − KC0)A0







σ

ζ̃

η


 −




0

0

KB1


 w + O(

√
ε),

σ(0) = O(
√

ε) , ζ̃(0) = ζ(0) − ζ̂(0) , η(0) = z̃(0) − Kζ̃(0) ,

(41)

which is a singularly perturbed system — in standard form — driven by white noise. Denote by (σ0, ζ̃0, η0)
the solutions of the system obtained by setting ε = 0 in the right-hand side of (41) and in the initial conditions.
Then, because the matrices [

−
√

2
(
B1BT

1

)1/4
I

−
(
B1BT

1

)1/2
0

]

of the fast (σ, ζ̃)-subsystem, and (I − KC0)A0 = A0 − Q0AT
0Q−1

0 of the slow η-subsystem of (41) are Hurwitz,
Theorem 1 in Khalil and Gajic [1984] guarantees that (σ0, ζ̃0, η0) approximate the exact solutions of (41) in
the sense that the variance of (σ−σ0, ζ̃− ζ̃0) is O(

√
ε) and the variance of η−η0 is O(ε). A fast-slow analysis

as in Section 3.2 yields the optimal filter

ξ̂ = ξ ,

ζ̂ = ξ̇ − A1ξ ,

η̇ =
(
I − KC0

)
A0η +

(
I − KC0

)
B0ξ +

(
I − KC0

)
A0K

(
ξ̇ − A1ξ

)
,

ẑ = η + Kζ̂ ,

ψ̂ = B−1
1

[(
I − C0K

)(
ξ̇ − A1ξ

)
− C0η

]
,

(42)

which estimates the random-walk input disturbance ψ = B−1
1 (ζ − C0z) in the limit as ε → 0, that is, when

there is no measurement noise. Again, the eigenvalues of the filter (42) are the mirror image of the NMP zeros
of the system. Here, however, the filter is driven by both the system output y = ξ and its derivative ẏ = ξ̇.
Moreover, it has a feedthrough from ẏ to the estimates, and, hence, its relative degree is minus one.

3.4 A Bode Integral for the Estimation of a Random-Walk Input

We now present a SISO result, complementary to Theorem 2.3, which connects Theorem 3.2 with a Bode
integral.

Theorem 3.3 (Bode Invariant for the Estimation of a Random-Walk Input). Let G be the transfer function
from ψ to y in (33), and F be the transfer function of any stable filter mapping the system output y to the
estimate ψ̂. Assume that F is such that

(i) the estimation error transfer function 1 − FG is stable and proper,

(ii) the NMP zeros of FG are equal to the NMP zeros of G.

Then
1

π

∫1
−1 log |F(jω)G(jω)|

dω

ω2
− lim

s!0

d(FG)

ds
= lim

ε!0
lim

t!1E
{
ψ̃2(t)

}
, (43)

where ψ̃(t) is the error in the optimal estimation of the random-walk input ψ in (33), (15).

Proof. The result follows from (37) and Theorem 8.2.5 of Seron et al. [1997a]. ¤

Note that FG is the transfer function from ψ to ψ̂ (Figure 4), and thus |F(jω)G(jω)| quantifies the perfor-
mance of the filter. Indeed, the closer |F(jω)G(jω)| is to one over the frequency range where the spectrum of
ψ is concentrated, the better the estimate ψ̂ “tracks” the disturbance ψ. In this sense, FG is a filtering comple-
mentary sensitivity function dual to the complementary sensitivity function T of the unitary feedback control
loop [Seron et al., 1997a, § 7.2].
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Figure 4: Estimation of a random-walk input disturbance

The integral in (43) can be used to measure the filter performance since its value gives the difference
between areas of complementary sensitivity amplification and attenuation. The second term on the LHS of
(43) is equal to the steady-state error ψ̃ that would result if ψ were a ramp signal. When F is any filter satisfying
the conditions of Theorem 3.3, then (43) is a fixed quantity equal to twice the sum of the reciprocal of the NMP
zeros of the system. Thus, similar to (11), the LHS of (43) is a filtering complementary sensitivity invariant in the
sense that its terms must be traded-off against each other to add to twice the sum of the reciprocal of the NMP
zeros of the system. Theorem 3.3 then states that this filtering invariant is equal to the MS estimation error
achieved by the optimal filter for this problem under no measurement noise.

When F is the optimal filter the filtering complementary sensitivity FG is all-pass.

Lemma 3.4. Let G be the transfer function from ψ to y in (33), and let F be the optimal filter transfer function
from y = ξ to the estimate ψ̂ in (42). Then |F(jω)G(jω)| = 1 for all ω. ◦

Hence, the absence of measurement noise allows the optimal filter to “invert” the system G (with its NMP
zeros mirrored with respect to the imaginary axis) by using derivatives of the system output. The all-pass
property induced by optimality implies that

1

π

∫1
−1 log |F(jω)G(jω)|

dω

ω2
= 0 ,

and therefore

− lim
s!0

d(FG)

ds
= 2

n−m∑

i=1

1

αi
.

The following fact will be required to prove Lemma 3.4.

Fact 3.5. Given the observable pair (A0, C0), C0 ∈ R1×k, A0 ∈ Rk×k, where A0 is antistable, and a scalar
b > 0, let Q0 be the positive definite solution of

A0Q0 + Q0AT
0 = Q0AT

0CT
0bC0A0Q0 (44)

and K = bQ0AT
0CT

0. Then

C0K =

{
0 if k is even,

2 if k is odd.

Proof. Introduce L(s) = C0A0(sI − A0)−1K and

S(s) = 1 −
L(s)

1 + L(s)
= 1 − C0A0

[
sI − (A0 − KC0A0)

]−1
K .

Since, from (44), A0 − KC0A0 = −Q0AT
0Q−1

0 , the poles of S are the mirror image of the eigenvalues of A0,
while its zeros are the poles of its inverse system, that is, the eigenvalues of (A0 − KC0A0) + KC0A0 = A0.
Hence |S(jω)| = 1 = |S−1(jω)| = |L(jω)+1|, which implies that the Nyquist plot of L is the unit circle centered
at −1. Noting that L(0) = −C0K and L(∞) = 0, the result follows from the Nyquist stability criterion and the
fact that S is stable. ¤

Proof of Lemma 3.4. Noting that, in the SISO case, B1 > 0 is scalar, the use of Fact 3.5 with b = (B1BT
1)−1

implies that 1 − C0K in (42) is 1 if the number of NMP zeros of G is even, and −1 if it is odd. Hence, F is



14 Technical Report CCEC 97-0414

an improper transfer function of relative degree −1. Since G has relative-degree 1, FG has relative degree 0.
From (33) and (42), and noting that ξ̇ − A1ξ = C0z + B1ψ, a realization for FG is




ξ̇

η̇

ż


 =




A1 0 C0(
I − KC0

)
B0

(
I − KC0

)
A0

(
I − KC0

)
A0KC0

B0 0 A0







ξ

η

z


 +




B1(
I − KC0

)
A0KB1

0


 ψ ,

ψ̂ =
[
0 −B−1

1 C0 B−1
1 C0

(
I − KC0

)]



ξ

η

z


 +

(
1 − B−1

1 C0KB1

)
ψ .

(45)

Let {Aψ, Bψ, Cψ, Dψ} denote the state-space matrices in (45). Interchange of rows and columns shows that
the poles of (45) are those of G, plus the eigenvalues of (I − KC0)A0 = −Q0AT

0Q−1
0 , which are the mirror

image of the NMP zeros of G. The zeros of (45) are the roots of its inverse system characteristic polynomial∣∣sI − Aψ + BψD−1
ψ Cψ

∣∣, where | · | denotes determinant. For 1 − C0K = ±1, we have that Dψ = ±1, and

∣∣∣sI − Aψ + BψD−1
ψ Cψ

∣∣∣ =

∣∣∣∣∣∣

sI − A1 ∓C0 0

−
(
I − KC0

)
B0 sI −

(
I − KC0

)
A0

(
I± KC0

)
0

−B0 0 sI − A0

∣∣∣∣∣∣
. (46)

The determinant (46) is the product of |sI − A0|, which yields the zeros of G, and

∣∣∣∣
sI − A1 ∓C0

−
(
I − KC0

)
B0 sI −

(
I − KC0

)
A0

(
I + KC0

)
∣∣∣∣ =

∣∣∣∣
I 0

0 I − KC0

∣∣∣∣
∣∣∣∣
sI − A1 −C0

−B0 sI − A0

∣∣∣∣
∣∣∣∣
I 0

0 I± KC0

∣∣∣∣ , (47)

which yields the zeros of F — at the poles of G — because (I − KC0)(I± KC0) = I. ¤

4 Conclusions

We have shown that, when the intensity of the process noise tends to zero, the optimal MS estimation error
is determined by the system unstable poles. In particular, the lowest achievable MS error in the estimation
of the noise-free output of the system equals twice the sum of its unstable poles, and is further characterized
as a filtering Bode sensitivity invariant that expresses tradeoffs in design for a general class of filters. For
the optimal filter corresponding to process and measurement noises of unit-intensity variance, this Bode
invariant gives the MS error in a closed-form formula known from Wiener filtering.

When the intensity of the measurement noise tends to zero, the optimal MS estimation error is determined
by the system NMP zeros. In the case of estimation of a random-walk input, the lowest achievable MS error
equals twice the sum of the reciprocal of its NMP zeros. We have characterized this error as a filtering Bode
complementary sensitivity invariant that holds for the class of filters that solve this estimation problem.

For the greatest clarity of the presentation, the results obtained in Section 3 are restricted to multivari-
able systems with all the zeros in the open right half plane and having relative-degree one. The extension to
systems having zeros also in the open left half plane is immediate by using a modal decomposition as in Sec-
tion 2. The extension to systems with relative degree greater than one will require a more intricate derivation
as in Saberi and Sannuti [1987].
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