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Abstract— This paper is motivated by a real estimation prob- In carrying out the above program of work, a major
lem arising in transient electromagnetic mineral exploraton. A problem was observed, namely that the ‘input’ signal was
specific sub-problem of interest in this area is that of findirg measured in a very noisy environment. This is a classical

the transfer function linking two antennae without utilising . . .
the primary excitation. Natural excitation is provided by near- errors-in-variables (EIV) problem [2]. The emphasis of the

field and far-field lightning strikes (‘sferics’). This estimation ~ current paper is on the presentation of this EIV estimation
problem is surprisingly difficult due to its intrinsic error s-in-  problem and its solution.

variables nature. This paper proposes a combined time- and  |n Section Il we provide background information on TEM
frequency-domain method to address the difficulty and obtal o, /eving and sferics. Then in Section Ill, we describe the
model estimates that are shown to be of practical use for sfers e . . . . . .
noise cancellation. EIV difficulties associated with sferics noise cancellatio
TEM surveying with systems such as GeofeffetA brief
. INTRODUCTION review of EIV is given in Section IV.

Mining companies throughout the world expend signif- In Section V, two approaches are proposed to address
icant effort searching for new ore bodies. A variety ofthe EIV problem. The first (natural) approach is to use
technologies are utilised including geological surveyis; d filtering to separate the signal from the noise. However, the
mond dr||||ng, and airborne mineral exp|0rati0n_ Our iststr resultant model is unsatisfactory for noise cancellat\de.
here is with ground-based transient electromagnetic (TEMijien use time-domain selection of favourable parts of the
surveying using an Australian-developed technology knowifiput record. This exploits the fact that sferics are highly
as Geoferrdt [1]. This system operates in a similar way tonon-stationary and appear as isolated pulses that stand out
metal detectors used for finding lost jewellery on the beacffom the background noise. As we show in Section V-B the
namely a pulse of current is used to induce a current in tH@mbination of time and frequency selectivity does lead to a
hidden metal. The transient decay of the induced current [8odel that can be successfully applied to noise cancetlatio
detected by measurement coils in the instrument. The system
used for mineral exploration is very large with a transmitte !l BACKGROUND TO TEM SURVEYING AND SFERICS
qup of the order of a square ki_Iometre and measuremept TEm surveying
coils of the order of a metre in diameter.

The detection of decaying currents induced in deep (up to 17ansient electromagnetic surveying (also known as time-
500 m) mineral deposits is a problem with very low signal-doma'” electromagnetic surveying) is a technique used in

to-noise ratios. Hence. substantial effort is directedasa Mineral exploration to detect underground conductive ore

reduction techniques. The sources of noise are many aRgdies by induction and detection of electromagnetic (EM)
varied and include instrument noise, harmonic disturbanc8€!ds. Fig. 1 shows a typical system configuration for TEM
(including 50 Hz power line interference) and ‘sferics’gsh  SUrveying with a system such as Geofefifet _
for ‘atmospherics’)— environmental electromagnetic aadi 1 he typical operation of a TEM surveying system consists
tion generated by lightning. of two phases: firstly, the transmission ofpaimary field

Multiple antennae are typically deployed for detection ifiuring which no measurements are made, and secondly, after
systems such as Geofelét which raises the possibility of the transmitter is switched off, the detection of dezondary
using the sferics seen at one receiving antenna to cancel {ifdd response (i.e., the transient response) of the earth. To
sferic component seen at another. In order to do this, it enerate the primary field, a pulsed current waveform is
first necessary to find the inter-antenna transfer funcliois ~ Passed through a loop or coil of wire (the transmitter), whic
leads to an experiment in which one measures the signali§d@id on the surface of the area to be surveyed. The primary
two antennae (with the primary excitation turned off) an(j|eld_|nduces superficial underground eddy c_urrents, wmch_|
then estimates the model between them. We note that in tii" induce eddy currents at greater depths in any conactiv
context, the input to the model is the sferic component di'e bodies. These underground decaying currents produce

the signal at the reference antenna. The rest of this signalth® secondary field, which can be measured by the array
considered to be ‘measurement noise’. of receiving antennae on the earth’s surface. The magnitude
_ ~and rate of decay of the secondary field depends on the
The authors are with the ARC Centre for Complex Dynamicg|ectrical conductivity of the ground, and, through pdster
Systems and Control (CDSC), The University of NewcastlellaGhan, . . . e .
2308, NSW, AUSTRALIA. {K.Lau, Julio.Braslavsky, Signal processing, allows the identification and locatién o

G aham Goodwi n}@ewcast | e. edu. au target ore bodies at depths of up to 500 m.



B e Primary field 7T lightning strikes that travel thousands of kilometres thyio
Receivers g ) the space between the earth and the ionosphere, which acts
as a waveguide. Hence, local and distant lightning storms
contribute to the sferics noise measured at any single point

Sferics noise can be divided into two groups, local and
distant. Local sferics noise consists of large, infrequent
bursts of short pulses (i.e., it is impulsive), and is non-
stationary in nature. Fig. 2 shows a measured large sferic
occurring at approximately 0.002 s.
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D f Fig. 2. A measured sferic (output antenna).

Induced electrical
currents :
S Distant sferics noise may be characterised as essentially
o coloured noise. It has been estimated that there are approx-
imately 100 lightning strikes per second worldwide. Thus,
distant sferics noise consists of many small pulses and can
be considered to be quasi-stationary. The spectrum ofrdista
sferics noise is concentrated in the 1-500 Hz and 2.5-10
kHz frequency bands. The dip in the spectrum between 500
Hz and 2.5 kHz is due to the attenuation of the earth-
ionosphere waveguide at these frequencies. Fig. 3, which
Fig. 1. Typical ground-based TEM surveying system configoma is reproduced from [6], shows a typical, moderately distant
sferics pulse and diagram of the different components of the
electromagnetic spectrum. The two sferics frequency bands

We consider a system in which a periodic current waveare clearly labelled.
fc_)rm _conS|st|ng of a series of square p_ulses of aIte_rnatmg Il1. DIFFICULTIES IN SFERICS NOISE CANCELLATION
sign is used. The secondary field at different locations is
measured using a number of receiver coils. The measuredOUr primary interest in the current paper is in sferics. The
data is interpreted to obtain a geological model which i§0al is to use sferics detected at a reference antenna o carr
consistent with the data. out sferics noise cancellation at a different, output améen

A more detailed description of TEM surveying can be/Ve note that related noise cancellation ideas have been used

Target ore body

found in [3], [4] and [5]. previously in other types of TEM surveying systems, e.g.,
) [71, [8] and [9]. However, these ignore the effects of errors
B. Sferics in-variables.

A major contributor to noise in the detection of deep A preliminary experiment aimed at verifying the veracity
underground ore bodies is sferics: environmental EM rasf the above idea was performed. A simple model consisting
diation that dominates receiver instrument noise in som&f a gain plus a time shift was fitted to the data (we will
environments (such as close to the equator). Sferics (&frort later show that this model is a good approximation at low
‘atmospherics’) originate from the EM radiation producegd b frequencies). However, when the model was utilised for
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Fig. 4. Spectra of the measured noise, residual noise atésrming noise
cancellation, and the cancellation signal (estimatedicsfenoise). Model

"""""""""" fitted to raw input-output data. Note that the spectra forrteasured and
residual noise are almost identical.
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will tend to under-estimate the gain at that frequency, as is
illustrated by the following simple example.

Example 1:Suppose the inputy(k) and outputy, (k) of
a scalar system are related as follows:

Yo(k) = gouo(k)

i.e., yo(k) is simply a scaled version afy(k). We assume

noise cancellation there was no reduction in the noise ﬂ% tuo(k) is a random signal with zero mean and a variance
the secondary antenna. Fig. 4 illustrates the results. T ?Vag{u()}

spectra for the noise at the output antenna before andWe wish to obtain an estimate of g, from N noisy
after performing noise cancellation are shown. The ﬁgur%easurements ofio(k) and yo(k). Let Othe kth pair of

alsp shows the spectrum qf the cancellatlon s!gnal, e, ﬂ?neasurements be denoted bk) andy(k). We have
estimate of the sferics noise obtained by using the fitted

Fig. 3. Components of the electromagnetic spectrum and eeratedy
distant sferics pulse (reproduced from [6]).

model and the measurement at the reference antenna. It can u(k) = wuo(k)+ nu(k), Q)

be seen that the F:ancellanon signal is significantly sma_lle y(k) = wolk) +ny(k), 2)
than the actual noise and, hence, the spectrum of the résidua

is almost identical to the measured noise. wheren,, andn, are assumed to be zero-mean, uncorrelated,

Careful examination of the problem reveals that tha'hite noise sequences with variandés{r.} andVar{n,},
measured signal at the reference antenna is corrupted BpPectively. It is also assumed that and7, are uncorre-
significant ‘measurement noise’. (Of course one does nétted withup. _

‘know’ the incoming sferics; one can only infer it from If we ignore the noise on(k), we can use a least squares
measurements). This suggests that there is an errors-fftimator to findj. The least squares fit faj, is given by
variables problem. We shall see in Section V that this is

: : : Yoy y(k)u(k)
indeed the case and that both time- and frequency-domain §= kle—
‘selectivity’ are necessary to mitigate the difficulty. > g w3 (k)
IV. BACKGROUND TO ERRORSIN-VARIABLES It can be seen that as the number of measureme€énts oo,

The presence of measurement noise on the input has . ~ 1/N Ziv:l(gouo(k)+ny(k))(uo(k) + nu(k))
|mpI|ca.t|ons for system !dentn‘lcapon. In particular, theise 1NN (uo(k) 4 1u(k))?
on the input results in biased estimates of the model. Indeed . .
if the measurement noise on the input is large at sorrF'é1d hence, sinceo, n, andrn, are independent, that
frequency, then the gain of the system will appear to be Var{uo}
small at that frequency. Hence, the identification algonith Var{ug} + Var{n,}’

g — Ago, Where\ =




We observe the following: For our purpose, the rest of spectrum, i.e., the harmonic
o If (k) is zero (no measurement noise on the input)isturbances and the parts of the spectrum above approxi-
theng — go as N — oo, i.e., it is consistent. mately 400 Hz and below approximately 20 Hz are treated
« If there is measurement noise on the inputu{u} # as measurement noise. These components are largely due
0), theng — Ago, where0 < X < 1. Hence, the least to instrument noise and harmonic disturbances (including
squares estimate is asymptotically biased. As might g0 Hz power _Iine interference). Other notablg fe_atures of
expected, the bias is less significant when the SNR #he spectrum include the peak at 8 kHz, which is due to
u is large Var{n,}/Var{ug} small). We also observe the resonance of the antenna coil, and the low frequency
that the least squares estimator under-estimates the gagiamponent £ 10 Hz), which is in part due to small
o If Var{n,}/Var{ug} is known, then) is known and movements of the antenna relative to the (static) magnetic
hence, in theory, we can correct the bias (by dividingield of the earth.
by )\). However, this approach can lead to large errors We can verify that medium- to near-field sferics make a
in the estimate, particularly wheh is small. We note significant contribution to the noise between 20 and 400
that this occurs when the SNR ofis small. Hz by viewing a filtered version of the signal. Fig. 5
The preceding simple example demonstrates the impo?fhows a filt_ered_ version_ of the sferic shown in Fig. 2. The_
tance of taking into account EIV when performing Systen(,:orrespondlng filtered signal from the reference antenna is
identification. also shown. We note that these signals were produced by
The study of EIV is a well established research areaising a non-causal filter to remove the components below 20
Recent surveys are given in [2] and [10]. Early work orHz and apove 400 Hz as weI_I as the harmonic components.
the topic includes [11] and [12]. More recent work includes From Fig. 5 it is clear that, in the 20 to 400 Hz frequency
[13]-[17]. band, the sferics pulse is large relative to the measurement
One of the recurring themes in the EIV literature is thatpoise. It can also be seen that there is a high degree
one can obtain a unique estimate provided that addition@f correlation between the output and reference antennae.
prior information is available. Examples are specific relaFurthermore, a gain plus a time shift can be used to model
tionships between polynomial orders and coprimeness #ie relationship between these signals. It should be noted
polynomials (e.g., [13], [15]). that the output can be delayed relative to the reference, or
However, these methods tend to be intrinsically sensitivéce versa In the following sections, we fit models of this
to the assumptions since one has to effectively ‘lift’ thdorm (gain plus a time shift) to the data.
true input out of _the_measured noisy input. Indeec_i, if th% Frequency-domain selectivity (filtering)
measurement noise is (relatively) large, then one is trying _ _ _
to extract a small signal from a large noise background by As discussed above, Fig. 5 suggests the use of a gain plus
utilising subtle differences in signal properties. It énlls that @ time shift to model the correlation between the reference

if one has a poor signal to noise ratio, then this is unlikelgnd output nodes. A natural first approach is to use least
to be a robust procedure. squares to fit a model to the filtered signals. We note that

Returning to the sferics noise cancellation problem ofhis approach uses frequency-domain selectivity (filgrio
Section llI, it was found that the signal to noise ratio igmprove the SNR of the input.
very poor. Consequently, great care is needed to be able toFigs. 6 and 7 illustrate the results when this approach is
successfully carry out identification. taken. In this case, 5 s of filtered data were used to fit the
model, and a separate set of data was used to validate the

V. OVERCOMING ERRORSIN-VARIABLES PROBLEMS IN model. The filtered output signal and the estimate of this
SFERICS NOISE CANCELLATION signal Z; (obtained by applying the model to the filtered

We now show that despite the low signal to noise ratigeference signal) are shown in Fig. 6. The residyal 3; is
(SNR) of the measured reference signal, we are able to Hiso shown. It can be seen that the gain is under-estimated.
a useful model to the data by utilising ‘time and frequencys discussed in Section IV this is expected when there is
selectivity’ to improve the SNR. noise on the input measurement.

Fig. 4 in Section Il shows the measured power spectral Fig. 7 shows the residual spectrum when the estimate
density (PSD) for the output antenna. We observe that thei® used for noise cancellation. The measured spectrum is
is a large noise mound between approximately 20 and 4Qflso shown. Recall that the aim is to reduce the baseline
Hz. In this section, we focus on reducing this mound for th@gise between 20 and 400 Hz. However, it can be seen that
following reasons: there is little or no reduction in the total amount of noise.

« It is known from the literature (see Section 1I-B) thatwhilst there is a slight reduction in the noise at the centre

sferics have significant power in this frequency band. of the mound, this is counteracted by an increase at other

« We are particularly interested in the cancellation ofrequencies. The increase in the noise at some frequencies

noise at low frequencies. is due to the presence of the input noise in the cancellation
We concentrate on the reduction of the ‘baseline’ noise-spesignal.
trum. We are not concerned with the harmonic componentsWe conclude that in this case, the noise on the input
as these latter components can be removed separately. is detrimental for two reasons. Firstly, because it results



in under-estimation of the gain, and secondly, because the
cancellation signal contains an extra component due to the
input noise. This extra component increases the noise at the «10°
output when the noise cancellation is performed.

measured
estimated

B. Combined frequency- and time-domain selectivity

ude (V)

The filtered sferics noise has a non-stationary character-
istic as it consists of large pulses separated by sections o§
coloured ‘measurement noise’. This suggests that we car <
obtain an input with a higher SNR by selecting only the
large pulses for model fitting and noise cancellation. We do
this by setting the parts of the signal between the pulses o 0.02 0.04 0.06 0.08 01 0.12
to zero (i.e., by windowing sections of the data). We refer ~ ,x10" ‘ ‘ ‘

to this process as ‘marking’ the input. For an example of a [ residual]
marked signal see the estimated signal in Fig. 9. 0 1
Fig. 8 shows the spectrum of the reference signal and the

spectrum of the filtered and marked version of the signal. It % 0.02 0.04 ?(233 0.08 01 0.12
can be seen that the marking process appears to separate the
sferics noise mound from the other noise sources. We note
that the estimated SNR of the unmarked signal is betwe%. 6. Filtered output, estimated output,; and residual errogy — 2.
0.3 and 1, depending on where the line is drawn betweeamdel fitted using the entire filtered input and output.
near- and far-field sferics. The SNR of the marked part of
the signal is between approximately 60 and 100. 107 :
Figs. 9 and 10 illustrate the results when the test in
Section V-A is repeated using the marked version of the
(same) data to fit the model and generate the cancellatior
signal. The filtered output,, estimated outputz; and
residual errorzy — 2y are shown in Fig. 9. It can be seen
that the fit for the large sferics pulses is very good.
Fig. 10 shows the measured and residual spectra when th
estimatez; is used for noise cancellation. The sferics noise
mound is now significantly reduced.
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VI. CONCLUSIONS

Amplitude (V)

encountered in a mineral exploration application. Thisliapp

i ‘ ‘ ‘ ‘ ‘ ‘ ‘ _ _ SL :
0 0005 001 0015 002 0025 003 0035 004 model inappropriate. By exploiting both time and frequency

t(s)

This paper has described an errors-in-variables problem

cation is characterised by a very poor signal to noise ratio
on the input rendering the usual methods for obtaining a

selectivity, it has been shown that a suitable model can be

obtained. The veracity of this estimated model has been

Fig. 5. Filtered sferic pulse at the output and referencerarzte.

tested by using it for noise cancellation on an independent

(validation) data set. This was shown to produce a significan

reduction in the noise.
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