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Abstract

There has recently been significant interest in feedback stabilization problems over communication
channels, including several with bit rate limited feedback. Motivated by considering one source of
such bit rate limits, we study the problem of stabilization over a signal-to-noise ratio (SNR) constrained
channel. We discuss both continuous and discrete time cases, and show that for either state feedback;
or for output feedback delay-free, minimum phase plants, there are limitations on the ability to stabilize
an unstable plant over an SNR constrained channel. These limitations in fact match precisely those
that might have been inferred by considering the associated ideal Shannon capacity bit rate over the
same channel.

1 Introduction

This paper discusses a feedback control system in which the measured information about the plant is fed
back to the controller using a noisy channel. Such a setting arises, for example, when sensors are far from
the controller and have to communicate through a (perhaps partially wireless) communication network.
Feedback control over communication networks has been the general theme of a significant number of
recent studies focusing on different aspects of the problem, particularly stabilization with quantization
effects and limited communication data rates (e.g., Delchamps, 1990; Tatikonda et al., 1998; Brockett
and Liberzon, 2000; Elia and Mitter, 2001; Nair and Evans, 2002, 2003; Ishii and Francis, 2003)

Figure 1 illustrates a basic feedback configuration of this type. Generally, if using digital communica-
tions, the link involves some pre- and post-processing of the signals that are sent through a communi-
cation channel, for example, filtering, analog-to-digital (A-D) conversion, coding, modulation, decoding,
demodulation and digital-to-analog (D-A) conversion.

The case of error and delay free digital communications is a scenario of particular interest studied
by Nair and Evans (2003). These authors give a necessary and sufficient condition for the asymptotic
feedback stabilizability of a discrete-time LTI system,

x(t + 1) = Ax(t) + Bu(t),

y(t) = Cx(t),
∀t = 0,1,2, . . . (1)
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Figure 1: Control system with feedback over a communication link

through a digital channel of limited bit rate capacity. Namely, for stabilization to be feasible, it is necessary
and sufficient that the data rate R (bits per interval) satisfies the condition

R>
∑
|ηi |≥1

log2 |ηi | bits per interval, (2)

where ηi are the unstable eigenvalues of the matrix A. Nair and Evans obtained this result by considering
the stabilization of the noiseless discrete-time system (1) by feedback through a quantized channel in
which the quantizer is seen as an information encoder. They showed that the condition (2) is necessary
and sufficient for the existence of a coding and control law that gives exponential convergence of the state
to the origin from a random initial state.

The main motivation for the work in this paper is the observation that a bit rate limitation may be due
to channel signal to noise ratio (SNR) limitations. We therefore consider SNR constrained channels and
restrict all pre- and post- signal processing involved in the communication link described above to LTI
filtering and D-A and A-D type operations. Thus, the communication link reduces to the noisy channel
itself. Our aim in this simplified setting is to quantify the fundamental limitations arising from a simple ideal
channel model that embodies two of the fundamental limiting factors in communications: noise and fixed
power constraints. Other fundamental limiting factors in the problem of control over a communication
link include bandwidth constraints (c.f., Dasgupta, 2003), variable time delays, and missing data and
quantization effects, which are beyond the scope of this paper.

The outline of the rest of the paper is as follows. We begin in Section 2 by considering the state
feedback continuous-time case. Using a minimum energy formulation, for a given channel noise intensity,
we are able to exhibit the minimum signal energy required for stabilization. We follow this by an equiv-
alent result for the output feedback case when the plant is minimum phase. In Section 3 we repeat this
analysis for the discrete-time case for both state and output feedback scenarios. Finally, we conclude
by discussing possible extensions of these results to performance questions, non-minimum phase plants
and other channel limitations.

2 Continuous-Time Feedback Channels

A common model of a continuous-time communication channel is represented in Figure 2. Such a model
is characterized by the linear input-output relation

r(t) = y(t) + n(t), t ∈ R+0 ,

in which n(t) is a continuous-time zero-mean additive white Gaussian noise (AWGN) with intensity Φ, i.e.,

E{n(t)} = 0, E{n′(t)n(τ)} = Φδ(t − τ), (3)
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Figure 2: Continuous-time AWGN channel with an input power constraint

where E{·} represents the expectation operator, and δ(t) is the unitary impulse.
The input signal y(t) is assumed a stationary stochastic process with root mean square (RMS) value

‖y‖RMS =
(
E{y′(t)y(t)}

)1/2 .
The power of the signal y is defined as ‖y‖2RMS and, for our AWGN channel model, is assumed to satisfy
the constraint

‖y‖2RMS < P (4)

for some predetermined value P > 0. Such a power constraint may arise either from electronic hardware
limitations or regulatory constraints introduced to minimize interference to other communication system
users.

As is well-known (e.g., Saberi et al., 1995, pp. 21–22), the power of the continuous-time stochastic
signal y can be expressed in terms of the autocorrelation matrix Ry(τ) = E{y(t)y′(t + τ)}, or the power
spectral density

Sy(ω) =
∫ ∞

−∞

Ry(τ)e
− jωτdτ,

as

‖y‖2RMS = trace
[
Ry(0)

]
=

1
2π

trace

[∫ ∞

−∞

Sy(ω) dω

]
. (5)

In this section, we will use the notation C̄+ and C̄− to represent respectively the closed right and left
halves of the complex plane C.

2.1 State Feedback Stabilization

We first consider the problem of finding a static state feedback gain K that stabilizes the loop of Figure 3,
subject to a constraint on the power of the computed control signal ys. In this problem we assume the
system is described by the state space model1

ẋ = Ax+ Bu, (6)

where the pair (A, B) is stabilizable and the state x is available for feedback. The matrix state feedback
gain K is assumed to asymptotically stabilize the system, and we suppose that the computed control
signal ys is fed back through a AWGN channel with a power constraint P ≥ ‖ys‖

2
RMS. We formalize the

statement of this problem as follows.

Problem 1 (Continuous-time state feedback stabilization with a power constraint).

1Note that a mathematically precise treatment of the continuous-time stochastic system would require use of Ito calculus, etc.
on the stochastic differential equation dx = Ax dt+ B du. Under appropriate stationarity assumptions, this formulation reduces
to the analysis here (Åström, 1970, §4).
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Figure 3: State feedback loop

Find a static state feedback gain K such that the closed loop system

ẋ(t) = (A− BK)x(t) + Bn(t)

ys(t) = Kx(t)
(7)

is asymptotically stable and, for a zero-mean white Gaussian noise input n(t) with intensity Φ, the power
of the signal ys(t) satisfies the constraint

‖ys‖
2
RMS < P (8)

for a predetermined feasible value P > 0. ◦

Because the closed loop system in Figure 3 is assumed asymptotically stable, the signal ys(t) resulting
from the input noise n(t) is a stationary stochastic process with Gaussian distribution. The power spectral
density of ys(t) can then be expressed as

Sys(ω) = TK( jω)Sn(ω)T′K(− jω),

where TK(s) is the closed loop transfer function between n(t) and ys(t) in Figure 3, that is,

TK(s) =
K(sI − A)−1B

1+ K(sI − A)−1B
. (9)

Thus, the power constraint on ys in the system of Figure 3 may be expressed as

P ≥ ‖ys‖
2
RMS = ‖TK‖

2
H2
Φ, (10)

where ‖TK‖H2 denotes the H2 norm of the strictly proper, stable scalar transfer function TK(s), defined as

‖TK‖H2 =

(
1
2π

∫ ∞

−∞

TK( jω)TK(− jω) dω

)1/2

.

The following result gives an explicit expression for the lowest value that ‖TK‖
2
H2

can take over the
class of all stabilizing gains K in the closed loop system in Figure 3.

Proposition 2.1. Consider the feedback loop of Figure 3. Let pk, k = 1,2, . . . ,m be the eigenvalues of A
in C+. Then,

inf
K : (A− BK) is Hurwitz

‖TK‖
2
H2
=

m∑
k=1

2 Re{pk} . (11)

Proof. See Appendix A.1. �
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From (11), we see that in order to be able to solve Problem 1, the lowest feasible value of P in (8)
must be greater than a positive value fixed by the open loop unstable poles of the plant and the intensity
of the noise; in other words, the channel SNR2 must satisfy

P

Φ
≥

m∑
k=1

2 Re{pk} . (12)

How does this constraint relate to Nair and Evans’s bound (2) on the lowest data rate required for
stabilization? Suppose that the discrete time system (1) arises as the discretization with sample interval
T of a continuous-time system with unstable eigenvalues pi ∈ C

+, i = 1,2, . . . ,m. Then, the bound (2)
establishes that the lowest data rate required for stabilization must satisfy

R/T > log2 e
∑

Re{pi }≥0

Re{pi} bits per second. (13)

On the other hand, we know that the capacity C of a continuous-time AWGN channel as in Figure 2,
with infinite bandwidth, power constraint P ≥ ‖y‖2RMS, and noise spectral density Φ, can be made arbitrar-
ily close to (Cover and Thomas, 1991, p. 250)

C =
P

2Φ
(
log2 e

)
, bits per second. (14)

Note that under (12), the maximum channel capacity (14) permitted by Shannon’s Theorem must
satisfy

C ≥ log2 e
m∑

k=1

Re{pk} bits per second. (15)

Therefore, assuming maximum channel capacity can be attained, Equation (15) gives the same bound
(13) derived from Nair and Evans’s result.

2.2 Output Feedback Stabilization

The previous section considered a simplified version of the feedback system of Figure 1 in which we were
only concerned about stabilization by static state feedback over an AWGN channel. In this section, we
turn to stabilization by dynamic output feedback. Under the assumption that the plant is minimum phase,
we will recover in this case the same bound (12) on the required SNR for stabilization, again consistent
with Nair and Evans’s result.

On using the channel model of Figure 2, the feedback loop of Figure 1 reduces to the LTI loop of
Figure 4, in which P(s) and C(s) respectively are the transfer functions of the plant and the controller,
and y(t) is the output of the system. We assume that the controller C(s) is such that the feedback loop
of Figure 4 is asymptotically stable. We also assume that the plant P(s) is proper and minimum phase (it
does not contain either zeros in C+ or time delays), although it may be unstable.

Because the closed loop system is asymptotically stable, the output y(t) resulting from the input noise
n(t) is a stationary stochastic process with Gaussian distribution. By using the power spectral density of
y(t) as in the previous section,

‖y‖2RMS =
1
2π

∫ ∞

−∞

trace
[
G( jω)G′(− jω)

]
Φdω

= ‖G‖2H2
Φ, (16)

2 Note here that we use the term SNR as the ratio signal power /noise intensity. Strictly, the SNR ratio in a continuous-time
channel should be defined as the ratio signal power /noise power, in which the noise power is WΦ, where W represents the
channel bandwidth (assumed infinite in this paper).
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Figure 4: Simplified continuous-time feedback loop over an AWGN channel

where G(s) is the closed loop transfer function between n(t) and y(t) in Figure 4

G(s) =
P(s)C(s)

1+ P(s)C(s)
, (17)

and ‖G‖H2 is the H2 norm of G(s). Note that ‖G‖H2 is finite because G(s) is stable and strictly proper.
Thus to find the lowest achievable value of ‖y‖RMS we have to find the lowest achievable value of ‖G‖H2

over the class of all stabilizing controllers.
If the plant P(s) is unstable, ‖G‖H2 has a positive lower bound that cannot be further reduced by any

choice of the controller, as we show in the following proposition.

Proposition 2.2. Consider the feedback loop of Figure 4. Assume that the plant P(s) is proper and
minimum phase, and has m poles pk, k = 1,2, . . . ,m in C+, and that C(s) is such that the closed-loop is
asymptotically stable. Then,

‖G‖2H2
≥

 m∑
k=1

2 Re{pk}

 . (18)

Proof. See Appendix A.2. �

From (14) and Proposition 2.2, we have that for the feedback loop of Figure 4, stabilization under the
power constraint (20) is only possible if

P ≥ ‖y‖2RMS = ‖G‖
2
H2
Φ ≥

m∑
k=1

2 Re{pk}Φ, (19)

which is the same as (12), and hence yields, together with Shannon’s Theorem, the same bound (15).
Again, assuming maximum channel capacity is attained, we recover the bound (13) derived for our
continuous-time setting from Nair and Evans’s result.

Note that in the output feedback case, if the plant P(s) in Figure 4 is non-minimum phase, then a
higher lower bound on ‖y‖2RMS, and hence also on C, should be expected. The lowest channel capacity
required would then account not only for the bit rate needed for stabilization of the loop, but also for the
H2 performance requirement on the system output.

3 Discrete-Time Feedback Channels

Under the simplifying assumptions stated in Section 1, that all pre- and post- signal processing involved in
the communication link illustrated in Figure 1 are limited to LTI filtering and sampling and hold operations,
we consider now a discrete-time version for the problems discussed in the previous sections.

A common model of a discrete-time communication channel is defined by the linear input-output
relation

r(t) = y(t) + n(t), t = 0,1,2, . . . , (20)
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in which n(t) represents a zero-mean, discrete-time white Gaussian noise, and the input signal y(t) is
required to satisfy a power constraint. This channel model, illustrated in Figure 5, is usually referred to as
the discrete-time AWGN channel, and is widely used in Communications (e.g., Proakis and Salehi 1994,
§10; Cover and Thomas 1991, §10; Forney and Ungerboeck 1998). The discrete-time AWGN channel
model is also useful to represent, to some extent, the effects of roundoff and quantization in A-D and D-A
converters (Gray, 1990).
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Figure 5: Discrete-time AWGN channel with power constraint

The zero-mean, discrete-time white Gaussian noise n(t) in (20) is assumed to have intensity Φ, i.e.,

E{n(t)} = 0, E{n′(t)n(τ)} = Φδ(t − τ), where δ(t − τ) =

1 if t = τ

0 otherwise.
(21)

The input signal y(t) is assumed to be a discrete-time stationary stochastic process with autocorrelation
matrix

Ry(τ) = E{y(t)y′(t + τ)},

and power spectral density

Sy(ω) =
∞∑
−∞

Ry(τ)e
− jωτ, −π ≤ ω ≤ π.

For a discrete-time stochastic signal y(t) we have

‖y‖RMS = E
{
y(t)′y(t)

}1/2 .
Its power ‖y‖2RMS is given by

‖y‖2RMS = trace
[
Ry(0)

]
=

1
2π

trace

[∫ π

−π
Sy(ω) dω

]
. (22)

The input power constraint in the channel model of Figure 5 is enforced by requiring that ‖y‖2RMS be
bounded by some predetermined positive value P, ‖y‖2RMS < P.

3.1 State Feedback Stabilization

Consider a discrete-time version of the state feedback stabilization problem discussed in Section 2.1,
illustrated in Figure 6. The computed state feedback signal ys is fed back over a discrete-time AWGN
channel with an input power constraint

‖ys‖
2
RMS < P, (23)

Under these conditions, we pose the following stabilization problem.

Problem 2 (State feedback stabilization with a power constraint).



Feedback Stabilization over SNR Constrained Channels Braslavsky, Middleton & Freudenberg - page 8 of 17

m

m
d

-

�

6

�

--

�

6

B
u x

z−1

A

K
ys

AWGN Channel
n

−

Figure 6: Discrete-time state feedback loop

Find a static state feedback gain K such that the closed loop system

x(t + 1) = (A− BK)x(t) + Bn(t)

ys(t) = Kx(t)
(24)

is asymptotically stable and, for a zero-mean white Gaussian noise input n(t) with intensity Φ, the power
of the signal ys(t) satisfies the constraint

‖ys‖
2
RMS < P (25)

for a predetermined feasible value P > 0. ◦

Note that the power constraint (23) is a constraint on the H2 norm of the transfer function between n
and ys in the loop of Figure 6. Indeed, it is well-known (e.g. Saberi et al., 1995, p. 23) that the power of
the signal ys(t) resulting from the input noise n(t) is given by

‖ys‖
2
RMS = ‖TK‖

2
H2
Φ, (26)

where TK(z) is the transfer function

TK(z) = K(zI − A+ BK)−1B, (27)

and ‖TK‖H2 now represents the H2 norm of a proper, stable scalar discrete transfer function, defined as

‖TK‖H2 =

(
1
2π

∫ π

−π
TK(ejθ)TK(e− jθ) dθ

) 1
2

(28)

=

 ∞∑
t=0

|TK(t)|2


1
2

, (29)

where TK(t) is the discrete-time impulse response of the transfer function TK(z).
The following proposition states necessary and sufficient conditions for Problem 2 to be solvable in

terms of the feasible SNR3 in the noisy feedback channel with power constraint P and noise power Φ.

Proposition 3.1. There exists a state feedback gain K solving Problem 2 if and only if the power con-
straint (25) satisfies

P

Φ
>

∏
|ηi |≥1

|ηi |
2 − 1

 , (30)

where {ηi : |ηi | ≥ 1} are the unstable eigenvalues of A in (24).

3In this case, our treatment of SNR is consistent with signal power /noise power, since in discrete-time the noise power is
precisely ‖n‖RMS = Φ. Compare Footnote 2 on Page 5.
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Proof. See Appendix A.3. �

Thus, we see that for the feedback stabilization problem to have a solution, the lowest feasible input
power constraint (25) for the AWGN feedback channel must be greater than a positive value fixed by the
open loop unstable poles of the plant and the intensity of the noise.

By using the constraint (30) on Shannon’s bound on the capacity of a discrete-time AWNG channel
(e.g., Cover and Thomas, 1991, § 10)

C =
1
2

log2

(
1+
P

Φ

)
bits per interval, (31)

we recover again Nair and Evans’s bound (2) on the lowest data rate necessary for stabilization,

C >
∑
|ηi |≥1

log2 |ηi | bits per interval. (32)

3.2 Output Feedback Stabilization

We consider the discrete-time output feedback loop pictured in Figure 7, in which we have used the
AWGN channel model of Figure 5 to represent the noisy feedback channel. We intend to find the lowest
value of ‖y‖2RMS over the set of all stabilizing controllers C(z) for a zero-mean, white Gaussian noise n(k)
with intensity Φ.
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P(z)C(z)
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n
AWGN Channel

‖y‖2RMS < P

Figure 7: Simplified discrete-time feedback loop over an AWGN channel

Note that

Y(z) = G(z)N(z) =
C(z)P(z)

1+C(z)P(z)
N(z) (33)

Since n(t) is white with power spectral density Sn(ω) = Φ, the power spectral density of the output y(t) is
given by

Sy(ω) = |G(ejω)|2Φ, (34)

and therefore the output power is

‖y‖2RMS =

( ∫ π

−π
|G(ejω)|2dω

)
Φ

=||G||2H2
Φ.

(35)

We are therefore trying to solve an H2 optimization problem.

Proposition 3.2. Consider the feedback loop of Figure 7. Assume that the plant P(z) is minimum phase,
strictly proper with relative degree 1, and has m poles pk, k = 1,2, . . . ,m, in D{, and that C(z) is such that
the closed loop is asymptotically stable. Then,

‖G‖2H2
≥

 m∏
i=1

|pi |
2

 − 1 (36)

Proof. See Appendix A.4. �
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4 Conclusions

In this paper we have been motivated by control over bit rate limited channels to consider stabilization
over SNR limited channels. We have considered the simple case where there is essentially no encoding
or decoding present, and looked at the limits of achievable stabilization of linear controls. For both state
feedback and for delay free minimum phase plants, we obtain results equivalent to those that would be
obtained if delay and error free, Shannon channel capacity digital communication could be performed on
the same channel. The results include both continuous-time and discrete-time channels.

Extensions of this work would include looking at output feedback non-minimum phase plants where,
at least in the present framework, a deterioration in the achievable H2 performance would suggest that
stabilization will be more difficult. In addition, channel bandwidth constraints, and more general control
performance questions than simple stabilization could be considered within the framework suggested in
this paper. More complex questions including the potential use of time varying or nonlinear elements in
the coding and decoding are also of interest.

A Appendix

A.1 Continuous-Time State Feedback

Proof of Proposition 2.1. Consider the following minimum energy stabilization problem.

Problem 3 (Continuous-time minimum energy stabilization). Find ys = −Kx minimizing the cost
function

J(x(0)) =
∫ ∞

0
|ys(t)|

2dt (37)

and such that the system

ẋ = Ax+ Bys, x(0) = B, (38)

is asymptotically stable. ◦

The value function (37) can be computed explicitly as

J(x(0)) =
∫ ∞

0

∣∣∣Ke(A−BK)tx(0)
∣∣∣2 dt

=
1
2π

∫ ∞

−∞

∣∣∣K( jωI − A+ BK)−1B
∣∣∣2 dω, by Parseval’s Theorem,

=
1
2π

∫ ∞

−∞

∣∣∣∣K( jωI − A)−1B
[
I + K( jωI − A)−1B

]∣∣∣∣2 dω, using the Matrix Inversion Lemma,

= ‖TK‖
2
H2
, (39)

where TK(s) is the transfer function defined in (9). Hence, the right hand side of (11) is precisely the
optimal value of (37) with x(0) = B.

Remark A.1. Note that Problem 3 does not have a well-defined solution if the matrix A in (38) has
eigenvalues on the jω-axis. However, the result can then still be proved by using perturbation arguments
in the same way suggested in Remark A.2 for the discrete-time case. Thus, for the rest of the proof, we
can assume without loss of generality that A does not have eigenvalues on the jω-axis. ◦

Without loss of generality assume that the system (38) is in the modal canonical form, that is,

ẋ =

[
As 0
0 Au

]
x+

[
Bs

Bu

]
ys,
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where As is Hurwitz and Au is anti-Hurwitz (that is, −Au is Hurwitz). Because the system is assumed
stabilizable, the pair (Au, Bu) is controllable and the minimum energy problem above has a well defined
solution given by

K∗ = BTP, (40)

where P is the unique symmetric positive semi-definite solution of the Riccati equation

ATP+ PA− PBBTP = 0. (41)

It is not difficult to verify that P has the form

P =

[
0 0
0 Pu

]
, (42)

where Pu is the unique symmetric and positive definite solution of the reduced order Riccati equation

PuAu + AT
u Pu − PuBuBT

u Pu = 0. (43)

Thus, the optimal value (37) for x(0) = B is then

J∗(B) = BTPB= BT
u PuBu

= traceP1/2
u BuBT

u P1/2
u

= trace(P−1/2
u AT

u P1/2
u + P1/2

u AuP−1/2
u )

= 2 traceAu = 2
m∑

k=1

Re{pk} ,

which, on using (39), proves (11). �

A.2 Continuous-Time Output Feedback

Proof of Proposition 2.2. To compute the lowest value of ‖G‖H2 over the class of all stabilizing controllers,
we apply a technique used in Chen et al. (2000). This is based on considering the spaces

L2 =

{
G(s) :

∫ ∞

−∞

|G( jω)|2dω < ∞

}
,

H2 = L2 ∩
{
G(s) : analytic in C̄+

}
and the orthogonal complement of H2

H⊥2 = L2 ∩
{
G(s) : analytic in C̄−

}
We start by deriving an expression for G(s) based on a parameterization of all stabilizing controllers.
Represent P(s) by a coprime factorization

P(s) =
N(s)
Bp(s)

,

where N(s) ∈ RH∞ (the space of proper, stable, rational functions), and

Bp(s) =
m∏

k=1

s− pk

s+ pk
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is the Blaschke product of all poles of P(s) in C+. By using the well-known Youla controller parameteri-
zation (e.g. Doyle et al., 1992, §5.4), we can represent any stabilizing controller for the feedback loop in
Figure 4 by4

C =
X + BpQ

Y− NQ
, (44)

where Q, X and Y are in RH∞, with X and Y satisfying the Bezout identity

NX+ BpY = 1. (45)

By replacing (44) in (45), we find that G can be expressed as

G =
(
1− Bp(Y− NQ)

)
= N(X + BpQ), (46)

where the last equality follows from the fact that X + BpQ and Y − NQ are also coprime and satisfy the
Bezout identity

N(X + BpQ) + Bp(Y− NQ) = 1.

Thus, from (46), the problem of finding the lowest value of ‖G‖H2 over the class of stabilizing controllers
reduces to that of finding

inf
Q∈RH∞

∥∥∥1− BpY+ BpNQ
∥∥∥

H2
. (47)

Now,

inf
Q∈RH∞

∥∥∥1− BpY+ BpNQ
∥∥∥

L2
= inf

Q∈RH∞

∥∥∥B−1
p − Y+ NQ

∥∥∥2

L2
, since Bp is all pass

= inf
Q∈RH∞

∥∥∥∥(1− B−1
p

)
+ (1− Y+ NQ)

∥∥∥∥2

L2
,

=
∥∥∥1− B−1

p

∥∥∥2

L2
+ inf

Q∈RH∞
‖1− Y+ NQ‖2L2

, (48)

where the last line follows since (1 − B−1
p ) is both strictly proper and anti-stable, and therefore is in H⊥2 ,

and conversely, (1− Y+ NQ) is strictly proper and stable and therefore in H2.
Assuming the plant is minimum phase, then we may take Q arbitrarily close to N−1 (1− Y). Indeed,

because (1−Y) is stable, given any ε > 0, there always exists some Qε ∈ RH∞ such that ‖1−Y+NQ‖L2 < ε,
which shows in (48) that inf Q∈RH∞ ‖1− Y+ NQ‖2L2

= 0.
On the other hand, note that∥∥∥1− B−1

p

∥∥∥2

L2
=

1
2π

∫ ∞

−∞

(
1− B−1

p ( jω)
) (

1− B−1
p (− jω)

)
dω,

=
1
2π

∫ ∞

−∞

(
1− B−1

p ( jω)
) (

1− Bp( jω)
)
dω,

=
1
2π

∫ ∞

−∞

(
1− B−1

p ( jω)
)
+

(
1− Bp( jω)

)
dω,

=
1
π

∫ ∞

−∞

(
1− Bp( jω)

)
dω, by conjugate symmetry.

4Dependency on s is suppressed to simplify notation when convenient.
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We now use contour integration around the clockwise-oriented contour in C̄+, which consists of the
imaginary axis, closed with a semi-circular region of arbitrarily large radius R in the right half plane,

∥∥∥1− B−1
p

∥∥∥2

L2
=

[
1
jπ

∮
C̄+

(
1− Bp(s)

)
ds

]
︸                        ︷︷                        ︸
= 0, since (1− Bp) is analytic in C̄+

− lim
R→∞

1
π

∫ − π2

π
2

(
1− Bp

(
Rejθ

))
Rejθdθ

 ,

= − lim
R→∞

1
π

∫ − π2

π
2

(
c1

Rejθ
+

c2

(Rejθ)2
+ · · ·

)
Rejθdθ

 , since (1− Bp) is strictly proper,

= c1 , lim
s→∞

(
s
(
1− Bp(s)

))
= 2

m∑
k=1

Re{pk} ,

which completes the proof.
�

A.3 Discrete-Time State Feedback

Proof of Proposition 3.1. Because of the relation (26), the lowest value of P for which Problem 2 admits
a solution is that in which K, among the set of all stabilizing state feedback gains, minimizes ‖G‖H2. The
value of ‖TK‖H2 may be expressed in terms of K, on using (29), by

‖TK‖
2
H2
=

∞∑
t=0

∣∣∣K(A− BK)tB
∣∣∣2 . (49)

An explicit expression of the lowest value of ‖TK‖H2 over all stabilizing Ks can be obtained by recognizing
the RHS of (49) as the optimal cost of the following auxiliary minimum energy stabilization problem from
a particular initial condition.

Problem 4 (Minimum energy stabilization). Find ys minimizing the cost

J(x(0)) =
∞∑

t=0

ys(t)
′ys(t) (50)

and such that the system

x(t + 1) = Ax(t) + Bys(t), with x(0) = B. (51)

is asymptotically stable. ◦

The optimal ys in Problem 4 is well-known to be (e.g. Anderson and Moore, 1971, §14)

ys
∗ = −K∗x, where K∗ = (1+ B′S B)−1B′S A, (52)

and S is the unique symmetric positive semidefinite solution of the discrete algebraic Riccati equation

A′S A− S = A′S B(1+ B′S B)−1B′S A. (53)

The evaluation of (50) at a state feedback ys = −Kx together with the expression of the closed-loop
response x(t) = (A− BK)tB, which follows from (51), yields

∞∑
t=0

ys
′(t)ys(t) =

∞∑
t=0

|K(A− BK)tB|2 = J(B),
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which with (49) shows that ‖TK‖
2
H2
= J(B).

The optimal cost for Problem 4 is achieved by ys
∗ in (52) and may be computed explicitly by

J(B) = B′S B. (54)

We next show that

B′S B=
∏
|ηi |≥1

|ηi |
2 − 1. (55)

Remark A.2. Note that if A in (51) has eigenvalues on the unit circle, Problem 4 as stated is not well
defined, in the sense that ys

∗ in (52) will not be stabilizing. Without loss of generality we will consider then
that A has no eigenvalues on the unit circle. Otherwise, our argument could be carried out with identical
conclusions by considering the minimum energy problem as a limiting case of an ε-parameterized family
of optimal control problems with cost

Jε(x(0)) =
∞∑

t=0

ε2x(t)′x(t) + ys(t)
′ys(t), ε > 0.

For any ε > 0 the corresponding state-feedback stabilization problem has a well defined solution. The
minimum energy optimal cost would then be taken as limε→0 Jε(x(0)). ◦

Without loss of generality assume that A and B in (7) are in the modal canonical form, that is,

A =

[
As 0
0 Au

]
, B =

[
Bs

Bu

]
,

where As is Hurwitz and Au is anti-Hurwitz (that is, A−1
u is Hurwitz). If the pair (A, B) is assumed stabiliz-

able, the pair (Au, Bu) is controllable and the minimum energy problem above has a well defined solution
given by (52), where S can be shown to have the form

S =

[
0 0
0 Su

]
, (56)

where Su is the unique symmetric and positive definite solution of the reduced order discrete algebraic
Riccati equation

A′uSuAu − Su = A′uSuBu(1+ B′uSuBu)−1B′uSuAu. (57)

Then the minimum energy state feedback gain (52) is given as K∗ =
[
0 (1+ B′uSuBu)−1B′uSuAu

]
and

yields the closed loop spectrum

σ
{
A− BK∗

}
= σ

{[
As 0
0 Au

]
−

[
0 Bs(1+ B′uSuBu)−1B′uSuAu

0 Bu(1+ B′uSuBu)−1B′uSuAu

]}
= σ {As} ∪ σ

{
Au − Bu(1+ B′uSuBu)−1B′uSuAu

}
= σ {As} ∪ σ

{
S−1

u A′uSu

}
, on using (57),

= σ {As} ∪ σ
{
A−1

u

}
. (58)

On the other hand,

A− B(1+ B′S B)−1B′S A= [I − B(1+ B′S B)−1B′S]A

= (I + BB′S)−1A,

by the Matrix Inversion Lemma, which together with (58) implies that

det{As}det
{
A−1

u

}
= det

{
(I + BB′S)−1A

}
= (1+ B′S B)−1 det{As}det{Au}

⇔ (1+ B′S B) = det{Au}
2,

from which we conclude (55), completing the proof. �
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A.4 Discrete-Time Output Feedback

Proof of Proposition 3.2. Here we follow similar lines to Toker et al. (2002). We consider

L2(D) =

{
f (z) :

1
2π

∫ π

−π
| f (ejθ)|2dθ < ∞

}
H2(D) = L2(D) ∩

{
f (z) : analytic in D{

}
and the orthogonal complement of H2(D)

H⊥2 (D) = L2(D) ∩ { f (z) : strictly proper and analytic in D}

Let

P(z) =
N(z)
Bp(z)

,

where N is a stable and proper rational function, and

Bp(z) =
m∏

i=1

z− ηi
1− zη̄i

is here the discrete-time Blaschke product of all poles of P outside the unit disk D. The class of all
discrete-time stabilizing controllers for P in the feedback loop of Figure 7 is parameterized by

C(z) =
X(z) + Bp(z)Q(z)

Y(z) − Q(z)N(z)
,

where Q,X and Y are stable and proper rational functions which satisfy the Bezout identity

X(z)N(z) + Bp(z)Y(z) = 1 (59)

Then we have that

G(z) = X(z)N(z) + Bp(z)Q(z)N(z)

= 1− Bp(z)Y(z) + Bp(z)Q(z)N(z).

Thus,

‖G‖2H2(D) = inf
Q(z)

∥∥∥1− Bp(z) (Y(s) − Q(z)N(z))
∥∥∥2

H2(D)

= inf
Q(z)

∥∥∥∥∥(Bp(z)
)−1
−

(
Bp(∞)

)−1
+

(
Bp(∞)

)−1
− Y(z) + Q(z)N(z)

∥∥∥∥∥2

L2(D)

=

∥∥∥∥∥(Bp(z)
)−1
−

(
Bp(∞)

)−1
∥∥∥∥∥2

L2(D)
+ inf

Q(z)

∥∥∥∥∥(Bp(∞)
)−1
− Y(z) + Q(z)N(z)

∥∥∥∥∥2

L2(D)
. (60)



Feedback Stabilization over SNR Constrained Channels Braslavsky, Middleton & Freudenberg - page 16 of 17

First note that∥∥∥∥∥(Bp(z)
)−1
−

(
Bp(∞)

)−1
∥∥∥∥∥2

L2(D)
=

1
2π

∫ π

−π

[
B−1

p (ejθ) − B−1
p (∞)

] [
B−1

p (e− jθ) − B−1
p (∞)

]
dθ

=
1
2π

∫ π

−π

[
1+ B−2

p (∞) − B−1
p (∞)

[
Bp(ejθ) + B−1

p (ejθ)
]]

dθ

=
1
π

∫ π

−π

1+ B−2
p (∞)

2
− B−1

p (∞)Bp(ejθ)

 dθ

=
1
jπ

∮
�∂D

1+ B−2
p (∞)

2
− B−1

p (∞)Bp(z)

 dθ
z

= 2

1+ B−2
p (∞)

2
− B−1

p (∞)B−1
p (0)

 , since B−1
p (z) is analytic in D,

=

m∏
i=1

|ηi |
2 − 1.

On the other hand, note in (60) that

inf
Q(z)

∥∥∥∥∥(Bp(∞)
)−1
− Y(z) + Q(z)N(z)

∥∥∥∥∥2

H2(D)
= 0

since we can take

Q(z) =
Y(z) − B−1

p (∞)

N(z)
,

which is stable and proper because N(z) is minimum phase and has relative degree 1, and Y(∞) = B−1
p (∞)

from the Bezout identity (59).
�

References

K.J. Åström. Introduction to Stochastic Control Theory. Academic Press, New York, 1970.

B.D.O. Anderson and J.B. Moore. Linear Optimal Control. Prentice-Hall, 1971.

R. Brockett and D. Liberzon. Quantized feedback stabilization of linear systems. IEEE Trans. on Automatic

Control, 45(7):1279–1289, June 2000.

J. Chen, L. Qiu, and O. Toker. Limitations on maximal tracking accuracy. IEEE Trans. on Automatic

Control, 45(2):326–331, February 2000.

T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley & Sons, 1991.

S. Dasgupta. Control over bandlimited communication channels: Limitations to stabilizability. In Proceed-

ings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, December 2003.

D.F. Delchamps. Stabilizing a linear system with quantized state feedback. IEEE Trans. on Automatic

Control, 35(8):916–924, August 1990.

J.C. Doyle, B.A. Francis, and A.R. Tannenbaum. Feedback control theory. Macmillan Publishing Com-
pany, 1992.



Feedback Stabilization over SNR Constrained Channels Braslavsky, Middleton & Freudenberg - page 17 of 17

N. Elia and S.K. Mitter. Stabilization of linear systems with limited information. IEEE Trans. on Automatic

Control, 46(9):1384–1400, September 2001.

G.D. Forney and G. Ungerboeck. Modulation and coding for linear Gaussian channels. IEEE Transactions

on Information Theory, 44(6):2384–2415, October 1998.

Robert M. Gray. Quantization noise spectra. IEEE Transactions on Information Theory, 36(6):1220–1244,
November 1990.

H. Ishii and B.A. Francis. Quadratic stabilization of sampled-data systems with quantization. Automatica,
39(10):1793–1800, 2003.

G.N. Nair and R.J. Evans. Mean square stabilisability of stochastic linear systems with data rate con-
straints. In Proceedings of the 41st IEEE Conference on Decision and Control, pages 1632–1637, Las
Vegas, Nevada, USA, December 2002.

G.N. Nair and R.J. Evans. Exponential stabilisability of finite-dimensional linear systems with limited data
rates. Automatica, 39(4):585–593, April 2003.

John G. Proakis and Masoud Salehi. Communication Systems Engineering. Prentice-Hall, 1994.

A. Saberi, P. Sannuti, and B.M. Chen. H2 optimal control. Prentice Hall International, 1995.

S. Tatikonda, A. Sahai, and S. Mitter. Control of lqg systems under communication constraints. In
Proceedings of the 37th IEEE Conference on Decision and Control, volume 1, pages 1165 –1170,
December 1998.

O. Toker, J. Chen, and L. Qiu. Tracking performance limitations in lti multivariable discrete-time systems.
IEEE Transactions on Circuits and Systems – I: Fundamental Theory and Applications, 49(5):657–670,
May 2002.


