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Abstract

We recently considered feedback stabilization over a Signal to Noise Ratio (SNR) constrained channel. The
results were examined for the state feedback and minimum phase cases, with links to bit-rate limited control. In
this paper, we extend this analysis to Non-Minimum Phase (NMP) plants, and show that for Linear Time Invariant
(LTI) control, NMP zeros further constrain the ability to stabilize over an SNR limited channel. This differs from the
situation of bit-rate limited stabilization where NMP zeros do not play a role. We show that by considering linear
time varying feedback the effect of NMP zeros in SNR limited stabilization may be eliminated.

1 Introduction

A number of recent references have discussed issues related to feedback control over communication links (e.g.[11,
3, 6, 8, 9, 10]). These and other references discuss a number of problems related to control over communications
channels including quantization effects, bit-rate limitations, bandwidth constraints, variable time delays and missing
data.

In our recent paper [2], we considered an alternative view point based on a signal to noise ratio limitation in
the feedback channel. We were able to demonstrate for the case of an additive white Gaussian noise channel that
there are demands on the channel SNR required for stabilization of an unstable plant. For the case of either state
feedback, or output feedback from a minimum phase plant, the bound on the required SNR depends only on the
plant poles. Furthermore, we noted an interesting link between our SNR based result and a related bit-rate limited
result along the lines of Nair and Evans in [9].

These previous results on bit-rate limited stabilization apply in the output feedback case, without any restric-
tion on the plant being minimum phase. This motivates us to consider extensions of the SNR limitations to the
nonminimum phase case.

2 Problem Formulation

Following [2], we consider control over a communication link as illustrated in Figure 1.
We consider the plant to be Linear Time Invariant (LTI) with minimal state space model:1

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

∗Also presented at the 2004 Asian Control Conference.
†Email: rick@ee.newcastle.edu.au
‡Email: jhb@ieee.org
§Department of EECS, University of Michigan, Ann Arbor, MI48109-2122 USA. Email: jfr@eecs.umich.edu
¶Last changed 8th September 2004.
1Note that a mathematically precise treatment of the continuous-time stochastic system would require use of Ito calculus, etc. on the

stochastic differential equation dx = Ax dt + B du. Under appropriate stationarity assumptions, this formulation reduces to the analysis here [1,
§4].
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Figure 1: Control system with feedback over a communication link

and transfer function

P(s) = C (sI − A )−1
B (2)

Our channel model is a simplified AWGN model with power constraint as shown in Figure 2.
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Figure 2: Continuous-time AWGN channel with an input power constraint

Note that the noise, n(t), is considered to be white, with (constant) spectral density, Φ ; and we define

‖ys(t)‖2
RMS , E

[
y ′s(t)ys(t)

]
(3)

We assume a given ‘power constraint’, P , such that we require

‖ys(t)‖2
RMS < P (4)

Let ys(t) have spectral density, Φys
(ω), then the power constraint (4) can be expressed as:

1
2π

∫ ∞

−∞
trace

(
Φys

(ω)
)
dω < P (5)

For simplicity of exposition, we restrict attention to the case of a SISO plant.

3 Continuous-Time LTI Output Feedback

Suppose that we restrict attention to the case where the controller, pre and post compensators are continuous
LTI systems with transfer functions KC (s), Kpre(s) and Kpost (s) (respectively), all of which are free to the designer.
Because of the SISO LTI nature of these compensators, we can reduce Figures 1 and 2 in this case to Figure 3,
where K (s) , KC (s)Kpre(s)Kpost (s).

We assume that K (s) is a proper rational transfer function and that the feedback loop of Figure 3 is internally
stable.

Because the closed loop system is asymptotically stable, the output sent on the communication channel ys(t)
resulting from the input noise n(t) is a stationary stochastic process with Gaussian distribution. By using the power
spectral density of ys(t) as in the previous section,

‖ys‖2
RMS =

1
2π

∫ ∞

−∞
trace

[
T (jω)T ′(−jω)

]
Φ dω

= ‖T‖2
H2
Φ , (6)
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Figure 3: Simplified continuous-time feedback loop over an AWGN channel

where T (s) is the closed loop transfer function between n(t) and ys(t) in Figure 3

T (s) =
P(s)K (s)

1 + P(s)K (s)
, (7)

and ‖T‖H2 is the H2 norm of T (s). Note that ‖T‖H2 is finite because T (s) is stable and strictly proper. Thus to find
the lowest achievable value of ‖y‖RMS we have to find the lowest achievable value of ‖T‖H2 over the class of all
stabilizing controllers.

If the plant P(s) is unstable, ‖T‖H2 has a positive lower bound that cannot be further reduced by any choice of
the controller, as we show in the following proposition, which generalizes a similar result in [2].

Proposition 3.1. Consider the feedback loop of Figure 3. Assume that the plant P(s) is proper; has np poles

pk , k = 1, 2, . . . , np in C+; has nz zeros z`, ` = 1, 2, . . . , nz in C+; and that K (s) is such that the closed-loop is

internally asymptotically stable. Then,

‖T‖2
H2
≥

 np∑
k=1

2 Re {pk}
 + η. (8)

where η is a function of the zeros and poles in C+ only, given by

η =
nz∑
`=1

nz∑
k=1

(
γ`γ̄k

(z` + z̄k )

)
(9)

where

γ` ,
(
1− B−1

p (z`)
)
(z` + z̄`)

∏
k,`

(z` + z̄k )
(z` − zk )

(10)

and Bp(s) is the Blaschke product of the ORHP plant poles:

Bp(s) =
np∏

k=1

s − pk

s + pk

. (11)

Proof. See Appendix A. �

Note that this result shows the additional cost term η in the achievable H2 norm of T when the plant is both
unstable and NMP. Inequality (8), together with (6), in turn gives the signal to noise constraint for stabilization

P
Φ

>

 np∑
k=1

2 Re {pk}
 + η (12)

For plants that are both unstable and NMP, the term η in (12) is always nonnegative and delineates additional
restrictions compared to the minimum phase case, where η = 0 (see for example [2], (14)). Note that in the case of
a single (real) NMP zero, i.e., when nz = 1, we have:

η = 2z
(
1− B−1

p (z)
)2

(13)

The following example illustrates the potentially very significant effects of NMP zeros.



Example 3.1. Consider the case where the plant transfer function is

P(s) =
−(s − 2)

(s + 1)(s − 1)
(14)

Clearly, we have one CRHP zero, z = 2 and one CRHP pole, p = 1. Proposition 3.1 gives that

inf
K (s) Stabilising

‖T‖2
H2

= 2 +
γ2

2z

= 18

(15)

since

γ = (1− B−1
p (z))2z = −8 (16)

Note that a more explicit derivation of various terms in the Youla parameterization defined later in (38),(39)

yields:

Bp =

(
s − 1
s + 1

)
N = − (s − 2)

(s + 1)2

X = 4

Y =

(
s + 7
s + 1

)
and optimal H2 controller variables

Q∗ =
2(s + 1)

s + 2

K∗ =
6(s + 1)
s + 10

which gives rise to an optimal closed loop with

T∗ =
−6(s − 2)

(s + 1)(s + 2)
=

18
(s + 1)

− 24
(s + 2)

and it can indeed be verified that ‖T∗‖H2 =
√

18.

Note, however, that this value is substantially larger than that obtained with state feedback (i.e., when NMP

zeros have no effect), in which case ‖T∗‖H2 =
√

2. �

We therefore see, both by Proposition 3.1, and by Example 3.1, that there is an extra term, η, present in the
NMP case. Therefore, the restriction to using LTI feedback control in the NMP case appears to give additional
constraints on the required channel SNR for stabilization, not present in the minimum phase case. Note also that
this is not the case in the results of [8], where only the plant poles influence the bit rate required for stabilization.
This difference between these two cases may be understood as a consequence of restricting attention to LTI control
and compensation. It may also be seen as an indirect effect of H2 optimization, which yields not only stability, but
some measure of performance as well. In the next section, we examine the use of time varying linear control for
stabilization.

4 Linear Time Varying Feedback Stabilization

We now turn to consider a specific type of Linear Time Varying (LTV) feedback to try to avoid the additional re-
strictions imposed by plant NMP zeros. In the subsequent development for simplicity, we make the following
assumption2.

2Note that this assumption is required in the following development since for simplicity we restrict attention to the case of a zero order hold
input



Assumption 1 (Nonzero steady state plant gain). We assume that P(0) , 0, that is
[

A B
C O

]
is full rank. �

We now propose a form of feedback based on sampling, filtering, resetting and other combinations of LTI and
LTV operations. Suppose that the controller is an identity operator, and that the post processing in Figure 1 is as
illustrated in Figure 4.
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Figure 4: Proposed post signal processing for LTV feedback stabilization

In Figure 4 the various blocks are defined as follows:

Averager: the Averager is an LTI filter with transfer function, 1−e−sT

sT
, which can be described in the time domain

as:

yrf (t) ,
1
T

∫ t

t−T

yr (τ )dτ (17)

Sampler: the Sampler follows standard definitions wherein:

wk , yrf (kT ) ; k = 0, 1, 2, . . . (18)

Zero Order Hold: the Zero Order Hold (ZOH) follows the standard definition:

e(t) , −wk ; t ∈ [kT , (k + 1)T ) (19)

The pre signal processing process is more complicated and is depicted in Figure 5.
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Figure 5: Proposed pre signal processing for LTV stabilization

In Figure 5, the ZOH block is equivalent, with the appropriate variable changes, to that defined before in (19).
The state feedback block is a possibly dynamic linear operation:

w∗
k = K (z)x̂k , (20)

where, with some abuse in notation, K (z) represents the LTI discrete-time operator with discrete transfer function
K (z).

Deadbeat State Observer: the deadbeat state observer takes continuous output measurements, y(t), and pro-
duces sampled data estimates of the extended state, X =

[
x(t)
u(t)

]
according to:



(a) z(kT+) = 0 ; k = 0, 1, . . . (21)

(b) ż(t) = −A′z(t) + C′y(t) for t ∈ (kT , (k + 1)T ) (22)

(c) X̂k =

(
x̂k

ûk−1

)
= W−1

T
z(kT−) (23)

where WT is the finite time Grammian

WT =
∫ T

0
e−A

′tC′Ce−Atdt (24)

and

A =

[
A B

0 0

]
; C =

[
C 0

]
. (25)

The overall block diagram for this stabilization problem is therefore as shown in Figure 6.
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Figure 6: LTV Output feedback equivalent loop

We now demonstrate that under suitable assumptions, Figure 6 simplifies to a discrete time, LTI, state feedback
problem. We start by examining the properties of the channel and adjacent ZOHs, filter and sampler.

Proposition 4.1. Consider the system shown in Figure 6, with averager, sampler and ZOH as defined in (17)–(19).
Then

wk = w∗
k−1 + nk (26)

where w∗
k−1 is obtained from (20) and nk is a white noise process with zero mean and variance E(n2

k
) = Φ/T.

Proof. Straightforward from noting that

wk = yrf (kT )

=
1
T

∫ kT

(k−1)T
yr (t)dt

=
1
T

∫ kT

(k−1)T
ys(t)dt +

1
T

∫ kT

(k−1)T
n(t)dt

= w∗
k−1 + nk .

The statistical properties of nk follow from those of n(t) and the averaging filter. �

In addition, for the ideal stabilization3 question posed, we can also establish some properties of the deadbeat
observer as follows:

3This ideal stabilization question implies that we have a perfect, noise and error free LTI model relation u(t) to y(t). This is of course
impractical and serves only as a starting point for the proposed analysis.



Proposition 4.2. Consider the system of Figure 6 with deadbeat observer designed as in (21)-(23). Define uk =
−ek , then under Assumption 1, assuming (A , C) is observable then W−1

T
is well defined and

x̂k = xk = x(kT )

ûk−1 = uk−1

Proof. See Appendix B. �

Note therefore that under the conditions of Propositions 3.1 and 4.2, the system can be expressed as:

xk+1 = AT xk + BT uk (27)

uk = −K (z)xk−1 − nk (28)

where AT , BT are the appropriate ZOH discretization of A , B ; AT = eAT ; BT =
∫ T

0
eAτ Bdτ .

Therefore, in the case of ideal stabilization, we are able to reduce the problem to a discrete time delayed
state feedback problem. Note that E[y2

s (t)] = E[(Kxk )2] and so we have reduced the continuous output feedback
stabilization problem to that of solving:

inf
K : Stabilizing

E
[
(Kxk )2

]
= inf

K : Stabilizing
‖Tk (z)‖2

H2
Φ/T (29)

where Tk (z) = −K (z)(zI − AT + BT K (z))z−1)−1BT is the transfer function from nk to K (z)xk .

Proposition 4.3. Consider the delayed state feedback system (27), (28). Then

inf
K (z) Stabilizing

‖Tk (z)‖2
H2

=

 np∏
i=1

|φi |2
− 1 + Ω (30)

where

Ω =

 np∏
i=1

|φi |2

∣∣∣∣∣∣∣

np∑
i=1

|φi |2 − 1

φi

∣∣∣∣∣∣∣
2

(31)

and φi are unstable eigenvalues of AT .

Proof. See Appendix C. �

We can interpret Proposition 4.3 in terms of SNR constraints directly as follows.

Corollary 4.4. The system of Figure 1, with time-varying feedback as in figure 4, can be stabilized without exceed-

ing the power constraint (4), if and only if:

P
Φ

>

(∏np

i=1 |φi |2
)
− 1 + Ω

T
(32)

�

Note that Ω represents the additional cost, compared to [2] (Section 3), due to time delay in the feedback. We
also note that delay (e.g., due to encoding and decoding) is not explicitly considered in [8] or [9] and therefore there
is no term equivalent to Ω.

Also, due to the sampled nature of the discrete time plant, φi = epiT , and we can now evaluate the behaviour of
(32), with fast sampling.

Proposition 4.5.

lim
T→0


(∏np

i=1 |φi |2
)
− 1 + Ω

T

 = 2
np∑
i=1

Re {pi} (33)



Proof. First note that

lim
T→0


∏np

i=1 |φi |2 − 1

T

 = lim
T→0

exp
(
2
∑np

i=1 Re {pi}T
)
− 1

T


= 2

np∑
i=1

Re {pi}

(34)

Also, the remaining term has a limit which can be expressed as:

lim
T→0

{
Ω

T

}
= lim

T→0


 n∏

i=1

|φi |2

∣∣∣∣∑np

i=1
|φi |2−1

φi

∣∣∣∣2
T


= lim

T→0

 n∏
i=1

|φi |2
 lim

T→0


∣∣∣∣∑np

i=1
|φi |2−1

φi

∣∣∣∣2
T


= 1×

∣∣∣∣∣∣∣ lim
T→0

np∑
i=1

(
|φi |2 − 1

φi

√
T

)∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
np∑
i=1

lim
T→0

(
e2 Re{pi}T − 1

epiT
√

T

)∣∣∣∣∣∣∣
2

= 0

(35)

and the desired result follows. �

We then have the main result of this section.

Theorem 4.6. Suppose that the SNR constraint satisfies

P
Φ

>

np∑
k=1

2 Re {pk} . (36)

Then there exists a sufficiently small T such that the system is stabilizable, under the SNR constraint, by the time

varying feedback scheme of figure 4. �

Proof. Follows immediately from Corollary 4.4 and Proposition 4.5. �

We therefore see that by using the appropriate time varying operators, the effect of NMP zeros on ideal SNR
limited feedback stabilization may be removed.

Example 4.1. We return to the plant (14) introduced in Example 3.1. Suppose that now we use the the LTV output

feedback loop of Figure 6 for stabilisation.

For this plant we compute the SNR constraint bound

δ(T ) ,

∏np

i=1 |φi |2 − 1 + Ω

T
(37)

on the RHS of (32). Because the plant discretisation has a single unstable pole at z = eT , the bound (37) reduces

to

δ(T ) =
e2T − 1 + Ω

T
, where Ω = (e2T − 1)2, from (31)

=
e2T − 1 + (e2T − 1)2

T

=
e2T (e2T − 1)

T
.



Thus, we see that

lim
T→0

δ(T ) = 2,

i.e., for faster sampling rates, the SNR constraint for the LTV output feedback equivalent loop of Figure 6 asymptot-

ically relaxes to that for the LTI state feedback loop, in which the lowest SNR constraint bound is 2 (Equation (12)
with η = 0).

Figure 7 plots the bound δ(T ) for sampling rates T ranging in (0, 0.5s] (in solid line). For reference, we also plot

(in dashed line) the SNR constraint bound obtained in the LTI discrete-time state feedback case [2].
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Figure 7: SNR constraint bounds

5 Conclusions

In this paper we have extended the results of [2] on SNR limited stabilization to the case of NMP plants. We have
shown that for LTI control, NMP zeros may impose a significantly more difficult SNR requirement for stabilization. In
the ideal case of no modelling errors, noise, or disturbances, this additional restriction may be essentially removed
by the use of Linear Time Varying feedback strategies.

A Appendix - Proof of Proposition 3.1

We follow a similar style of proof to that in [2]. To compute the lowest value of ‖T‖H2 over the class of all stabilizing
controllers, we apply a technique used in Chen et al. [4]. This is based on considering subspaces of the set of
rational transfer functions, G(s):

L2 =

{
T (s) :

∫ ∞

−∞
|T (jω)|2dω < ∞

}
,

H2 = L2 ∩
{
T (s) : analytic in C̄+

}
and the orthogonal complement of H2

H⊥
2 = L2 ∩

{
T (s) : analytic in C̄−

}



We start by deriving an expression for T (s) based on a parameterisation of all stabilizing controllers. Represent
P(s) by a coprime factorization

P(s) =
N(s)
Bp(s)

,

where N(s) ∈ RH∞ (the space of proper, stable, rational functions), and Bp is the Blaschke product defined in (11).
By using the well-known Youla controller parameterisation [e.g. 5, §5.4], we can represent any stabilizing controller
for the feedback loop in Figure 3 by4

K =
X + BpQ

Y − NQ
, (38)

where Q , X and Y are in RH∞, with X and Y satisfying the Bezout identity

NX + BpY = 1. (39)

By replacing (38) in (39), we find that T can be expressed as

T =
(
1− Bp(Y − NQ)

)
= N(X + BpQ). (40)

Thus, from (40), the problem of finding the lowest value of ‖T‖H2 over the class of stabilizing controllers reduces
to that of finding

inf
Q∈RH∞

‖1− BpY + BpNQ‖
H2

. (41)

Now, as in [2] and since since Bp is all pass:

inf
Q∈RH∞

‖1− BpY + BpNQ‖
L2

= inf
Q∈RH∞

∥∥∥B−1
p − Y + NQ

∥∥∥2

L2
,

= inf
Q∈RH∞

∥∥∥∥(B−1
p − 1

)
+ (1− Y + NQ)

∥∥∥∥2

L2

,

=
∥∥∥1− B−1

p

∥∥∥2

L2
+ inf

Q∈RH∞
‖1− Y + NQ‖2

L2
(42)

where the last line follows since (1 − B−1
p ) is both strictly proper and anti-stable, and therefore is in H⊥

2 , and
conversely, (1− Y + NQ) is strictly proper and stable and therefore in H2.

It follows by the same arguments as in [2, Appendix A.2], that:

∥∥∥1− B−1
p

∥∥∥2

L2
= 2

np∑
k=1

Re {pk} . (43)

It therefore remains to evaluate the last term on the RHS of (42), which we denote by η:

η , inf
Q∈RH∞

‖1− Y + NQ‖2
L2

. (44)

Let N(s) = Bz(s)Nm(s) where Nm has no CRHP poles or zeros, and Bz is the Blaschke product of the CRHP
zeros of N:

Bz(s) =
nz∏
`=1

(s − z`)
(s + z̄`)

(45)

Because Bz is all-pass we can rewrite (44) as

η : = inf
Q∈RH∞

∥∥∥B−1
z (1− Y ) + NmQ

∥∥∥2

L2

= inf
Q∈RH∞

∥∥∥Γ⊥ + Γ + NmQ
∥∥∥2

L2

(46)

4Dependency on s is suppressed to simplify notation when convenient.



where B−1
z (s) (1− Y (s)) = Γ⊥(s) + Γ (s) where Γ (and Γ⊥) are in H2 (and H⊥

2 ) respectively. Since Nm is minimum
phase, it follows that

inf
Q∈RH∞

‖Γ + NmQ‖2
L2

= 0 (47)

and therefore from (46):

η =
∥∥∥Γ⊥(s)

∥∥∥2

H⊥2
(48)

The CRHP poles of Γ⊥(s) are precisely the CRHP plant zeros, z`, and therefore we can use residue calculus
to show that

Γ⊥(s) =
nz∑
`=1

(
ρ`

(s − z`)
(1− Y (z`))

)
(49)

where ρ` is the residue of B−1
z evaluated at s = z`:

ρ` = (z` + z̄`)
∏
k,`

(z` + z̄k )
(z` − zk )

(50)

Therefore, noting from (39) and N(z`) = 0 that Y (z`) = B−1
p (z`), and defining γ` = ρ`

(
1− B−1

p (z`)
)

it follows
that:

η =
nz∑
`=1

nz∑
k=1

(
γ`γ̄k

(z` + z̄k )

)
(51)

which completes the proof.
�

B Appendix - Proof of Proposition 4.2.

Firstly, we define an augmented continuous time state,

X (t) =

[
x(t)
u(t)

]
(52)

Then note that for t ∈ (kT , (k + 1)T ), since u(t) = −e(t) is generated by a ZOH

Ẋ (t) =

[
ẋ(t)
u̇(t)

]
=

[
Ax(t) + Bu(t)

0

]
=

[
A B

0 0

]
X (t)

= AX (t)

y(t) = Cx(t) = CX (t)

(53)

We now show that (A, C) is observable by contradiction and the PBH test (e.g., see [7, § 2.4.3]). Suppose that
(A, C) is not an observable pair, then there exists nontrival v1, v2, λ such that[

A B

0 0

] [
v1

v2

]
= λ

[
v1

v2

]
(54)

and
[
C 0

] [v1

v2

]
= 0 (55)

Equations (54) and (55) can be rewritten as

Av1 + Bv2 = λv1 (56)

0 = λv2 (57)

Cv1 = 0. (58)



Now (57) implies either λ = 0 or v2 = 0. Suppose v2 = 0. Then (56) and (58) reduce to: Av1 = λv1 ; Cv1 = 0
which implies that (A , C) is not observable. Therefore, suppose instead v2 , 0 and λ = 0. Then (56) reduces to:

Av1 + Bv2 = 0 (59)

which together with (58) violates Assumption 1. Thus by contradiction, (A, C), is observable.
Since A, C, is observable, the finite time observability Grammian, WT , is full rank for any T > 0.
With z as defined in (21), (22), for t ∈ ((k − 1)T , kT ):

z(t) =
∫ t

(k−1)T
e−A

′(t−τ )C′y(τ )dτ (60)

Also, over the same time interval,

y(τ ) = CeA(τ−(k−1)T )X ((k − 1)T+)

= CeA(τ−kT )X (kT−)
(61)

and so combining (61) and (60)

z(kT−) =
∫ kT

(k−1)T
e−A

′(kT−τ )C′CeA(τ−kT )X (kT−)dτ

= WT X (kT−)

(62)

�

C Appendix - Proof of Proposition 4.3

We follow similar lines to those in Appendix A.4 of [2]. Introduce the spaces rational of transfer functions

L2(D) =

{
f (z) :

1
2π

∫ π

−π

|f (e jθ)|2dθ < ∞
}

H2(D) = L2(D) ∩
{
f (z) : analytic in D{

}
and the orthogonal complement of H2(D)

H⊥
2 (D) = L2(D) ∩ {f (z) : strictly proper and analytic in D} ,

where D is the unit disk in the complex plane C.
Consider now the single input multiple output transfer function

P(z) =
N(z)

Bd,p(z)
=

1
z

(zI − AT )−1
BT

where N is a stable and proper rational transfer function matrix, and

Bd,p(z) =
m∏

i=1

z − φi

1− zφ̄i

is here the discrete-time Blaschke product of all poles φ of P outside the unit disk D. The class of all discrete-time
stabilizing controllers for P in the feedback control of (27),(28) is parameterized by

K (z) =
X (z) + Bd,p(z)Q(z)

Y (z)− Q(z)N(z)
,

where Q , X and Y are stable and proper rational functions which satisfy the Bezout identity

X (z)N(z) + Bp,d(z)Y (z) = 1 (63)

Then we have that

Tk (z) = X (z)N(z) + Bd,p(z)Q(z)N(z)

= 1− Bd,p(z)Y (z) + Bd,p(z)Q(z)N(z).
(64)



Thus,

‖Tk‖2
H2(D) = inf

Q(z)
‖1− Bd,p(z) (Y (s)− Q(z)N(z))‖2

H2(D)

= inf
Q(z)

∥∥∥∥∥(Bd,p(z)
)−1

−
(
Bd,p(∞)

)−1
+

(
Bd,p(∞)

)−1
− Y (z) + Q(z)N(z)

∥∥∥∥∥2

L2(D)

=
∥∥∥∥∥(Bd,p(z)

)−1
−

(
Bd,p(∞)

)−1
∥∥∥∥∥2

L2(D)
+ inf

Q(z)

∥∥∥∥∥(Bd,p(∞)
)−1

− Y (z) + Q(z)N(z)
∥∥∥∥∥2

L2(D)
.

(65)

As in [2] we can show that∥∥∥∥∥(Bd,p(z)
)−1

−
(
Bd,p(∞)

)−1
∥∥∥∥∥2

L2(D)
=

 np∏
i=1

|φi |2
− 1. (66)

It remains therefore to evaluate second term on the RHS of (65). Assume that N(z) has (minimum) relative
degree r (note in fact that in our case, r = 2).

Then

Ω = inf
Q(z)

∥∥∥∥B−1
d,p (∞)− Y (z) + Q(z)N(z)

∥∥∥∥2

L2(D)

= inf
Q(z)

∥∥∥∥zr
(
B−1

d,p (∞)− Y (z)
)

+ Q(z)
(
zrN(z)

)∥∥∥∥2

L2(D)

(67)

Since Y (z) is analytic in Dc , it admits a Taylor series expansion in z−1. We also note from (63) and that N(z) is
strictly proper that Y (∞) = B−1

d,p (∞) and therefore

zr
(
B−1

d,p (∞)− Y (z)
)

= β1z(r−1) + β2z(r−2) + . . . + βr−1z + Y+(z) (68)

where Y+(z) is stable and proper. Furthermore, from (63) and N(z) relative degree r , B−1
d,p = −βo − β1z − β2z2 . . .;

and so

βo = −
np∏
i=1

(φi)

β1 =

− np∏
i=1

(φi)

 np∑
i=1

(
|φi |2 − 1

φi

) (69)

Using (68) in (67), and noting that z` ∈ H⊥
2 (D) for ` = 1, 2, . . . we obtain:

Ω =
∥∥∥β1z(r−1) + β2z(r−2) + . . . + βr−1z

∥∥∥2

l2(D)

+ inf
Q(z)

‖Y r (z) + Q(z)
(
zrN(z)

)‖
=|β1|2 + |β2|2 + . . . + |βr−2|2

(70)

since zrN(z) is minimum phase and relative degree zero, and z` ⊥ zk for k , `. The result then follows from the
fact that the relative degree is 2, and using (70) and (66). �
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