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Abstract

This paper introduces a novel event-driven sampled-data feedback scheme based on
hysteretic quantization. In the proposed sampling scheme, the plant output samples are
triggered by the crossings—with hysteresis—of the signal through its quantization levels.
The plant and controller communicate over binary channels that operate asynchronously
and are assumed to be error and delay–free. The paper proposes two systematic out-
put feedback control design strategies. The first strategy consists in the digital emulation
of a previously designed analog controller. If such analog controller achieves closed-loop
asymptotic stability, the proposed emulation design guarantees closed-loop practical stabil-
ity of the resulting asynchronous sampled-data system. The second design strategy is a
simple direct design that drives the plant state to the origin in finite time after a total trans-
mission of 2n + 2 bits, where n is the order of the plant. These results exhibit the potential
of the proposed scheme for the development of general tools for the analysis and design of
practical event-driven sampled-data control systems.

1 Introduction

The study of networked control systems has attracted increasing research interest in recent
years (for example, see the special issue [1] and the references therein). While standard control
theory assumes the instantaneous availability of sensor and actuator information for control
computations, networked control system formulations generally assume that such information is
transmitted over communication channels, which pose additional constraints to system analysis
and design. Such constraints include limitations in communication bandwidth, transmission
power, data rates, and effects of signal quantization. A general theory for networked control
systems is as yet unavailable, and therefore research efforts have concentrated on the study of
partial aspects of the problem.

A number of works have considered the problem of feedback stabilization over a communi-
cation channel subject to data-rate constrains; see the upcoming paper [2] for an overview. A
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fundamental result in stabilization under data-rate constraints states that there exist a positive
lower bound on the data-rate [bits per second] required to achieve closed loop stability of a
linear time invariant, continuous-time plant with poles in the open right-half plane [3, 4].

An underlying assumption for this fundamental result is that the output of the plant is sam-
pled in an essentially time-driven fashion; be it uniform and periodic, as in [3], or nonuniform,
as in [5, 6]. Namely, the samples are obtained at instants that are largely independent of the
plant current dynamic evolution.

Recent works have discussed event-driven alternatives to conventional time-driven sam-
pling schemes [7, 8, 9]. One of such alternatives is Lebesgue sampling [7], in which samples
are triggered by the crossing of the signal through quantization levels. Such sampling scheme
presents a number of potential advantages for networked control, such as clock-free operation,
low data-rate requirements [7], and higher energy efficiency in digital-to-analog conversion [10].
On the other hand, a main disadvantage is that control analysis and design are more difficult.
Thus, little theory seems available, in contrast with the well-developed theory for time-driven
periodic sampled-data systems [11].

Motivated by the recent developments in networked control systems and the growing inter-
est in event-driven sampling, the present paper explores the use of a level-crossing sampling
(LCS) scheme based on hysteretic quantization for feedback stabilization under data-rate con-
straints. The proposed LCS scheme may be viewed as a Lebesgue sampling scheme in which
the quantizer includes hysteresis. Hysteresis allows us to implement 1-bit coding feedback
communication in the proposed control strategies, which has the potential to achieve the most
efficient data-rates [6]. In addition, under noisy scenarios, hysteresis would also minimize spu-
rious sampling, further contributing to low data-rate feedback communication. Such hysteretic
quantized LCS scheme has been used for discrete-event control and simulation in [12, 13].

The present paper aims to contribute to the development of a sampled-data control theory
based on event-driven sampling schemes by proposing two systematic control strategies based
on hysteretic LCS:

1. a control design strategy by event-driven “emulation” of a previously designed analog
controller

2. a control design strategy by “direct” design using a combined deadbeat estimation and
control scheme.

If the original analog control design achieves closed-loop asymptotic stability, we show that
the proposed “emulation” design based on such controller guarantees closed-loop practical
stability. The emulated controller is implemented as a quantized state system [12] that approx-
imates the original analog controller. We give a bound for the approximation error between
the closed-loop trajectories obtained by emulation with respect to those that would be obtained
with the original analog controller. We believe that the proposed LCS emulation design is a
systematic approach to obtain a practical event-based sampled-data controller with guaran-
teed stability and error properties.

Assuming no disturbances in the plant states or outputs, the proposed “direct” design con-
trol strategy drives the plant state to the origin in finite time under the constraint of 1-bit (delay
and error-free) transmissions, both between sensor and controller, and between controller and
actuator. The control strategy consists in two separate open-loop procedures carried out se-
quentially: 1. deadbeat estimation of the unknown initial condition, 2. deadbeat bang-bang
control to the origin. Under the idealized conditions assumed, the proposed strategy achieves
stability with effectively zero average data-rate, thus appearing to circumvent the data-rate lim-
itations known for feedback based on conventional time-driven sampling. However, it can be
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anticipated that noisy measurements, plant uncertainties and time delays will certainly impose
a non-zero average data-rate, as we discuss in Section 4.4.

The paper is organized as follows: In Section 2 we present our assumptions and describe
the scheme under study: a feedback loop with binary communication channels between plant
and controller. We describe the proposed hysteretic quantized LCS scheme in detail, as well as
the proposed 1-bit coding and decoding associated strategies. Section 3 presents the proposed
asynchronous emulation design, and gives its main properties. A numerical simulation example
is given at the beginning of the section and is revisited at the end. Section 4 presents the
proposed direct design for asynchronous deadbeat stabilization based on LCS. At the end of
this section we discuss in more detail the issue of stabilization under data-rate constraints with
the conventional smapling, and with the proposed LCS design strategy. Section 5 summarizes
the paper conclusions.
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2 Level crossing sampling scheme

2.1 Feedback system

The general feedback scheme considered is shown in Figure 1. We model two communication
links in the feedback loop: a sensor communication link, between the measured plant output
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and the controller input, and an actuator communication link, between controller output and
plant input. These communication links are assumed to be error-free and have no noise distur-
bances nor transmission delays.

Noiseless
digital
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Digital
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Figure 1: Event-driven sampled-data scheme for feedback stabilization over digital channels

2.2 Plant.

The plant is a continuous-time, finite dimensional LTI system given by the minimal realization

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t).
(1)

The matrices A, B, C are assumed known, but the system initial condition x(0) is unknown.

2.3 Actuator.

We consider an actuator that can only produce values in the set U , {−pU, · · · ,−U, 0,U, · · · , pU}
where U is a positive real constant and p is a positive integer. We assume that the switching
of the actuator is instantaneous and the values are held constant (in a zero-order-hold fashion)
until a different value of u(t) is generated.

2.4 Level crossing sampling with hysteresis

The proposed event-driven sampling scheme generates a new sample of this signal whenever
y(t) differs from the previous sample in a fixed quantity h > 0, which we call the quantization
interval.

Let y(t) be a continuous-time real valued scalar signal. Then the LCS device produces the
quantized (but exact) samples

ys(tk) = y(tk) (2)

at the sampling instants tk , k = 0, 1, 2, . . . defined by

tk = inf {τ ∈ (tk−1, τ ] : |y(τ) − ys(tk−1)| > h} . (3)

The quantization interval h > 0 is assumed regular for simplicity; a quantization interval de-
pendent on y could be implemented similarly. Figure 2 illustrates an output signal produced
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Figure 2: Event-driven sampling/quantization

by such LCS device, plotted together with the input signal that generates it, for a quantization
interval h = 1.

Notice that the proposed LCS scheme (3), (2) has hysteresis, which in general reduces the
number of samples generated. Moreover, if the derivative of y(t) is bounded, the hysteresis
guarantees that a nonzero time interval exists between successive samples. Figure 3 depicts
the nonlinear characteristic of the proposed hysteretic quantizer.

We denote by Qh{y} the hysteretic quantized signal obtained by applying the hysteretic
quantization operator with interval h to the signal y . Note that this is a nonlinearity with memory,
in that Qh{y}(t0) depends not only on the value y(t) at t = t0, but also on the history of y(t) for
t ≤ t0.

y(t)

ys(t) = Qh{y}(t)

h

h

Figure 3: Quantizer with hysteresis, ys(t) = Qh{y}(t)

A fundamental property of this LCS scheme is that successive samples always differ in
±h. Consequently, each sample can be coded using only one bit, thus reducing the amount of
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information that needs to be transmitted.

2.5 Coder/digital channel. Sensor link

We assume that the digital channel is memory-less and error-free, and can only transmit one
bit, 0 or 1, per asynchronous sample produced by the LCS device. The coding strategy is the
following: When a sample is produced, at say t = tk , the channel transmits

{

1, if ys(tk) > ys(tk−1),

0, if ys(tk) < ys(tk−1).
(4)

Thus, a 1 is transmitted if the current sample of the output has increased with respect to its
previous sample, or a 0 if it has decreased. If no samples are produced, no transmission takes
place. However, notice that in the proposed scheme there is also information when no samples
are produced; namely, the output y(t) remains within its quantization band.

2.6 Decoder. Sensor link.

The decoder receives the sequence of bits indicating the changes in ys and calculates

yr (tk) =

{

h, when 1 is received,

−h, when 0 is received.
(5)

Notice that

yr (tk) = ys(tk) − ys(tk−1). (6)

2.7 Digital controller

The controller receives an asynchronous sequence of values yr (tk) and produces a sequence
of control actions us(τj), where—in general—the time sequences tk and τj are different.

We consider that us(τj) ∈ U , and us(τ0) = 0. We shall also restrict |us(τj) − us(τj−1)| ∈
{U, 2pU}, that is, successive control actions differ in one quantization level or they can jump
between the saturation limits. This restriction permits coding the successive control values
using only one bit.

In the next sections we shall propose two different strategies to calculate the sequence
us(τj).

2.8 Coder/digital channel. Actuator link

The coding strategy in the actuator link is similar to that of the sensor link, transmitting only
when the controller produces a control signal that differs from its value at the previous sampling
instant. Then, when a sample is produced at t = τj , the channel transmits

{

1, if us(τj) − us(τj−1) ∈ {−2pU, U}

0, if us(τj) − us(τj−1) ∈ {−U, 2pU}
(7)
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2.9 Decoder. Actuator link

The actuator decoder receives the sequence of bits informing the changes in us , and it builds
the signal ur (τj) according to following logic























ur (τj−1) + U, if ur (τj−1) < pU and 1 is received

ur (τj−1) − U, if ur (τj−1) > −pU and 0 is received

−pU, if ur (τj−1) = pU and 1 is received

pU, if ur (τj−1) = −pU and 0 is received

Notice that, provided that ur (τ0) = us(τ0) = 0, it is always true that ur (τj) = us(τj).

3 Controller design by emulation

In this section, we introduce a method for designing a digital control law as an approximation of
a previously designed continuous-time controller. In our asynchronous level crossing sampling
setting, such digital approximation is carried out by implementing the continuous-time controller
as a quantized state controller [12].

We first introduce the basic idea of the method on a simple example.

3.1 An introductory example

The unstable plant

ẋ(t) = x(t) + u(t); y(t) = x(t) (8)

is asymptotically stabilized by the PI controller

ż(t) = y(t)

u(t) = −2y(t) − z(t).
(9)

Let us replace the continuous controller law (9) by the quantized state approximation

ż(t) = ys(t)

yc(t) = −2ys(t) − ζ(t),
(10)

where

ys(t) = Qh{y}(t) and ζ(t) = Qg{z}(t) (11)

are variables quantized with intervals h and g using the nonlinear hysteretic characteristic
shown in Figure 3.

Let us also assume that U = {· · · ,−4,−2, 0, 2, 4, · · · }; that is, U = 2 in U as defined in
Section 2.3. Then, us(t) is calculated as the nearest element of U from yc(t).

We select the quantization intervals in (11) h = 0.5 and g = 0.1, and considering the initial
conditions x(0) = 10 and z(0) = ζ(0) = 0 the system will evolve as follows:

• At t = 0 the controller receives the value ys(t) = 10. According to (10) we have yc(t) =
−20 and ż(t) = 10. Thus, us(t) = −20. These values remain constant until a new sample
ys is received or when ζ(t) changes. The next change in ζ(t) is produced when it differs
from z(t) in 0.1. Since z(t) grows with a slope of 10, that will happen when t = 0.1/10.
Thus, the controller schedules the next change in ζ(t) for t = 0.01.
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• Then, at t = 0.01 we have ζ(t) = z(t) = 0.1, yc(t) = −20.1 and u(t) remains equal to
−20. The slope ż(t) also remains constant and next change in ζ(t) is then scheduled for
t = 0.02.

• At t = 0.02 it turns out that ζ(t) = z(t) = 0.2, yc(t) = −20.2 and the remaining variables
do not change. After two identical steps, we have t = 0.04 and ζ(t) = z(t) = 0.4,
yc = −20.4 and the next change is scheduled for t = 0.05.

• However, when t = 0.0488, it turns out that y(t) = 9.5 and a new sample ys = y = 9.5 is
then sent to the controller. Thus, yc(t) = −19.4 and then us(t) remains equal to −20. The
controller state can be calculated as z(t) = 0.4 + 0.0088× 10 = 0.488, while its new slope
becomes 9.5. Thus, the next change in ζ(t) will occur after (0.05−0.0488)/9.5 = 0.000126
units of time and the calculations continue in the same way.

The quantized controller (10) works as a discrete event system: it receives a sequence
of values ys(t) and it schedules internal changes (when ζ(t) changes) as well as generating
output events (when us(t) changes).

As we can see from the initial sequence of events in the evolution of the closed-loop system
(8), (10), the calculations inside the controller are very simple and can be implemented in a dig-
ital system. As we shall show, the emulated controller (10) behaves similarly to the continuous
controller (9), in the sense that the closed-loop trajectories generated will be close to those that
would be generated with the original analog controller.

In the next section we shall generalize and more formally define the idea behind the con-
troller approximation in this example.

3.2 Quantized state controller (QSC)

Let the continuous-time controller previously designed for the plant (1) be given by the state
realization

ż(t) = Acz(t) + Bc y(t)

u(t) = Ccz(t) + Dc y(t),
(12)

and assume that the continuous-time closed loop system (1), (12) is asymptotically stable. For
simplicity, we also assume that the state realization (12) is in the observer canonical form [14].

The QSC approximation of the continuous-time controller (12) is a continuous-time system
defined by the state equations

ż(t) = Acζ(t) + Bc uc(t)

yc(t) = Ccζ(t) + Dc uc(t),
(13)

where z ∈ R
nc , and ζ ∈ R

nc is the component-wise quantized version of the state vector z , that
is,

ζ =











Qg1
{z1}

Qg2
{z2}
...

Qgnc
{znc}











, (14)

where each Qgi
{·} is a quantization function with hysteresis, as depicted in Figure 3, with

quantization intervals gi , i = 1, . . . , nc .
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Since the plant output is only available from the received samples yr (tk) = ys(tk)−ys(tk−1),
we can calculate

uc(t) = uc(tk−1) + yr (tk), for tk ≤ t < tk+1. (15)

Then, provided that the sequence yr (tk) includes the information about the initial output y(t0),1

it will be true that uc(tk) = y(tk).
Since uc(t) follows a piecewise constant trajectory, it follows that the components of ζ(t)

and yc(t) are also piecewise constant and the components of z(t) are piecewise linear and
continuous.2

We remark that the calculation of the resulting output sequence yc(τj) does not require
numerical integration as (13) is already a discrete system.

Notice that each component ζi (t) of ζ(t) only changes when |ζi (tj)−zi (tj)| = gi . Since xi (t)
is continuous, this implies that |ζi (tj) − ζi (tj−1)| = gi .

By taking into account that System (12) is in the observer canonical form, it follows that
yc(t) = ζ1(t) + Duc(t) and then yc(t) changes with jumps of either ±g1 (when ζ1 changes) or
±Dch (when uc changes).

We have assumed that the controller output us(t) ∈ U . To accomplish this condition, we
define us(t) as the nearest element of U from yc(t). Then, provided that g1 ≤ U and Dch ≤ U,
it will be true that us(τj)− us(τj−1) = ±U, and we can apply the proposed coding and decoding
strategies described in Sections 2.8 and 2.9.

3.3 Properties of the QSC scheme

Defining ∆z(t) , ζ(t) − z(t), ∆u(t) , u(t) − yc(t) and ∆y(t) , uc(t) − y(t), we can rewrite
Equation (13) as

ż(t) = Ac(z + ∆z) + Bc(y + ∆y)

u(t) = Cc(z + ∆z) + Dc(y + ∆y) + ∆u(t).
(16)

Notice that |∆y(t)| ≤ h and |∆zi | ≤ gi for i = 1, · · · , nc .
If we assume also that the controller output yc(t) cannot reach the saturation bounds ±p U

(because p is sufficiently large), then it is also true that |∆u(t)| ≤ U.
The closed loop system (1), (16) can be written as

ẇ(t) = Ã(w(t) + ∆w(t)) + F∆v(t) (17)

where

w(t) ,

[

x(t)
z(t)

]

; ∆w(t) ,

[

0n×1

∆z(t)

]

; ∆v(t) ,

[

y(t)
u(t)

]

,

and

Ã =

[

A + BDcC BCc

BcC Ac

]

; F =

[

BDc B

Bc 0

]

.

1To this end, we may for example allow the coder to transmit a sequence of m bits during the initialization
informing that the initial output is ±mh.

2Consequently, System (13) is equivalent to a discrete event system in terms of the DEVS formalism [15]. The
DEVS model equivalent to this system can be found in [13].
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Notice that the ideal closed loop system (1), (12) is

ẇ(t) = Ãw(t) (18)

Thus, (17) is just a perturbed version of the plant with the original continuous-time controller
(12).

In the perturbed system (17), the absolute value of each component of the perturbation
terms ∆w(t) and ∆v(t) is bounded by either h, gi or U. More formally, we can write

|∆w(t)| ≤ g ,











0n×1

g1

...
gnc











; |∆v(t)| ≤ γ ,

[

h

U

]

(19)

where |·| denotes the component-wise module and the inequality sign ≤ denotes a component-
wise inequality.

Since the plant with the quantized state controller is a perturbed version of the plant with
the original continuous-time controller, the following theorem can be derived

Theorem 1. Suppose that the closed loop system (18) is asymptotically stable and let w(t) be
its solution from the initial condition w(0) = w0. Let w̃(t) be the solution of (17) from the same
initial condition w0 and let Λ = V−1ÃV be a modal decomposition of Ã.

Then, for all t ≥ 0,

|w̃(t) − w(t)| ≤ |V | × (|Re(Λ)−1Λ||V−1|g + |Re(Λ)−1V−1F |γ). (20)

Proof. Define ε(t) , w̃(t) − w(t). Then, subtracting (18) from (17) we obtain

ε̇(t) = Ã(ε(t) + ∆w(t)) + F∆v(t)

with ε(0) = 0. The perturbation terms verify (19).
When Ã is diagonalizable, Theorem 3 of [16] concludes that

|ε(t)| ≤ |V | × (|Re(Λ)−1Λ||V−1|g + |Re(Λ)−1V−1F |γ)

for all t ≥ 0.
For the non-diagonalizable case, the same result can be derived following the procedure

developed in Theorem 3.3 of [17].

This theorem says that the state trajectory of the plant with the quantized state controller re-
mains close to the state trajectory of the plant with the original continuous controller. Moreover,
since the original closed loop system is asymptotically stable, its solutions go to zero. Thus, the
state trajectories of the plant with the QSC go to a bounded region around the origin. The size
of that bounded region is calculated by the right hand side of Equation (20).

Therefore, the closed loop system with QSC is always practically stable, irrespective of the
size of the discretization parameters h, U, and gi , i = 1, · · · , nc .

3.4 Example revisited

Figures 4–6 show the simulation results of the System (8),(10).
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Figure 4: Plant state x(t) (ideal trajectory in dotted line).
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Figure 5: Quantized variable ζ(t) (ideal z(t) in dotted line).
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Figure 6: Controller (ys(t)) and Plant (u(t), dotted) input values.

After t = 7.0823 the plant reaches the origin. In that moment the controller produces the
input u = 0 and then the system remains in that state without producing more samples or
calculations at the controller.

In this example, the total number of samples ys received by the controller were 41, while
the number of samples u sent by the controller were 28. Since each change can be coded with
only one bit, the number of transmitted bits was 61 in the sensor link (we added here 20 bits to
transmit the initial value of ys ) and 28 in the actuator link.

Using Theorem 1 we can prove that the trajectories of the plant with the continuous con-
troller and those of the system with the discrete controller never differ in more than 1.8856 (in
both variables, x and z). The dotted lines in Figs 4–5 corroborate this bound.

In this case, due to the particular choice of the controller and quantization intervals h, g , U,
the plant reached the origin. However, in general the QSC implementation will yield final oscil-
lations (bounded according to Theorem 1) requiring a nonzero average data-rate.

In the next section, we introduce a different idea to design the control law so that the state
of the system can be driven to the origin with a minimum number of of bits transmitted.

4 Direct deadbeat control design

In this section we present a simple stabilization strategy based on LCS by hysteretic quanti-
zation that drives the state of the system (1) to the origin in finite time from an unknown initial
condition x(0) = x0. Thus, we will show that with an asynchronous LCS scheme, it is possible
to achieve stability by transmitting a finite number of bits.

We consider again the feedback scheme of Figure 1, with components as described in
Section 2, and we assume that the plant (1) is unstable.

The proposed stabilization strategy consists in two open-loop procedures performed se-
quentially:
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1. Finite-time initial state estimation

2. Finite-time control to the origin.

4.1 Finite-time initial state estimation

The controller receives one bit per sample indicating whether the system output has increased
(a 1 received) or decreased (a 0 received) in a value h with respect to the previous sample. The
sampling times {t0, t1, . . . } are also recorded. Notice that the sampling times coincide with the
samples arrival times, since transmission is assumed delay-free.

Let x(0) = x0 be the plant initial state and let {t0, t1, . . . , tn}, be the sequence of sampling
times corresponding to the first n + 1 samples, where n, recall, is the order of the plant (1). By
setting the control input to u(t) = 0 during the state estimation cycle, we have

y(t0) = CeAt0x0, y(t1) = CeAt1x0, · · · y(tn) = CeAtnx0.

Since y(0) is unknown, from (6) we write

Yr ,











yr (t1)
yr (t2)

...
yr (tn)











=











C (eAt1 − eAt0)
C (eAt2 − eAt1)

...
C (eAtn − eAtn−1)











x0 , E x0. (21)

Then, since the sampling instants {t0, t1, . . . , tn} are available, and the vector Yr is known
independently of the value y(0) (due to the property (6)), we can obtain x0 = E−1Yr after
receiving n + 1 bits, provided E is nonsingular.

4.2 Non pathological sampling

The nonsingularity of the matrix E can be seen as analogous to the well-known non pathological
sampling condition in periodic sampled-data systems [18, p. 40–42].

Theorem 2. Assume that the matrix A is unstable and it has only nonzero real eigenvalues.
Then, provided that the pair (A, C ) is observable, the matrix E defined in Equation (21) is non
singular.

Proof. Suppose that the matrix E is singular. Then, the equation E x0 = 0 has non trivial
solutions. Let x̃0 6= 0 be one of these solutions and define ỹ(t) , CeAt x̃0. It follows that
ỹ(tk)−ỹ(tk−1) = Ek x̃0 = 0 for k = 1, 2, . . . , n, where Ek , C (eAtk−eAtk−1). Then, ỹ(t0) = ỹ(t1) =
· · · = ỹ(tn+1), which implies that the system output crosses n + 1 times the value ỹ(t0). This,
however, is impossible for a system of order n in absense of null or complex eigenvalues.

If the plant had complex or null eigenvalues, the matrix E might be singular. However, the
pathological sampling condition can only occur if the sampling instants t1, . . . , tn+1 (the instants
of crossing of the output y(t) by levels separated by ±h) coincide with the instants in which ỹ

(the output from a different initial condition) crosses a unique level. Such situation is indeed
possible if the plant has null eigenvalues, because the output might then remain constant from
some initial condition. For complex eigenvalues, we conjecture that pathological sampling can
be made impossible by choosing h sufficiently small with respect to y(t0). In that case, the
sampling instants t0, t1, · · · will turn out to be such that the elapsed time tn+1−t0 results shorter
than the shortest period of any natural oscillation mode in the plant.
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4.3 Finite-time control to the origin

Now, at any time τ0 > tn we have the complete knowledge of x(0), and thus we can compute

x(τ0) = eAτ0x0,

and from x(τ0) we can drive the system to the origin in finite time by an open loop bang-bang
strategy in a maximum of n switches of the input u(t), which for simplicity we can assume to
take values in the set {−U, 0,U}, for some sufficiently large U > 0.

The switching times {τ1, τ2, . . . , τn−1} and the time of arrival to the origin τn can be computed
by different methods by solving the minimum time control problem; see for example [19].

Thus, stability with the proposed LCS scheme is achieved in finite-time; namely, with the
transmission of 2n + 2 bits.

4.4 Remarks on stabilization under data-rate constraints

The above two-cycle stabilization strategy based on an LCS scheme appears to, at least in
some simple cases, circumvent limitations in the problem of feedback stabilization under data-
rate constraints. This problem has received significant attention in recent years [1], and a
number of exciting new results have been obtained. In this context, it is interesting to observe
that if the digital feedback stabilization problem is approached by periodic sampling of the plant
output y(t) at a rate 1/T Hz and a synchronous zero-order-hold is used to generate the control
input u(t), then the plant (1) can be stabilized if and only if the average data-rate [in bits/s]
satisfies [20, 4]

R

T
> (log2 e)

m
∑

i=1

Re pi > 0 bits per second.

On the other hand, we have seen above that a strategy based on an LCS scheme can be
argued to achieve feedback stability after the transmission of 2n + 2 bits; namely, with zero
average data-rate.

We believe this is an interesting property of the proposed asynchronous digital control strat-
egy, which we will further analyze in future work. However, it should be noted that the proposed
LCS strategy relies on:

• instantaneous availability of information about the sampling instants {t0, t1, . . . , tn}

• knowledge of the sampling instants {t0, t1, . . . , tn} to infinite precision.

In practice, there will be delays in transmission, which, if unknown, will prevent stability with the
proposed ideal strategy. Also, note that although the information about the measured output
is quantized, it is exact. However, a necessary approximation would arise in recording the
sampling times {t0, t1, . . . } digitally, which would then need to be quantized to finite precision.

Effectively, this stabilization strategy makes use of an inherent coding of the output ampli-
tudes into the sequence of sampling instants. If these sampling instants were not exactly known
(due to unknown delays or quantization), the plant will not in general reach the origin in finite
time at the end of the control cycle. Since the plant is assumed to be unstable, the output will
then start crossing new quantization levels, and a new set of estimation/control cycles will have
to be repeated. Following this idea, we would then necessarily arrive at a nonzero average
data-rate and practical closed-loop stability.
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Let us now consider an alternative time-driven sampling stabilization approach. In the ideal
situation we assumed that the channel can transmit one bit at any instant of time. Thus, it could
be argued to alternatively take a sample of the plant outut periodically and then send two bits,
together with an interval of time proportional to that output value, in a pulse-width modulated
fashion. In other words, we could then code (and also decode) with infinite accuracy the plant
output. Thus, after receiving n samples (corresponding in this case to 2 n bits) it would be
possible to estimate the plant initial state and apply a control strategy to drive the state to the
origin, again achieving stability with a finite number of transmitted bits.

From the perspective of information transmitted, the above reasoning shows that by allowing
the channel to transmit at any instant of time is equivalent to the transmission of an infinite
amount of information per sample. Under these conditions, a time-driven sampling strategy
could also achieve stability in a finite number of transmissions.

It would thus seem that the only advantage of the proposed event-driven sampling scheme
is that it uses simpler devices than those required by the above pulse-width modulation coding
strategy.

However, in a non-ideal case (that is, in the presence of unknown delays, noise, etc), such
time-driven sampling scheme must continue to sample using a worst-case sampling period, so
that the output does not escape too far away from the origin.

On the other hand, the proposed event-driven sampling scheme will only generate samples
(and act on the actuator communication link) only when the plant output reaches the value ±h.
Thus, if the estimation of the initial state was sufficiently good—for example, because during
such period we did not have large perturbations—the plant will reach a state very close to the
origin and it will take a relatively long time until the output reaches ±h.

5 Conclusions

We have presented a digital control formulation based on an asynchronous level-crossing sam-
pling scheme by hysteretic quantization. Such formulation appears attractive in control scenar-
ios in which feedback is implemented over data-rate limited communication channels, which
we have illustrated by presenting two approaches for control design: an asynchronous digital
emulation design, and a direct digital design strategy.

In asynchronous emulation, a previously designed analog controller is implemented as a
quantized state controller, which is shown to guarantee practical stability. In some cases—as
in the example introduced—it also achieves stability after a finite number of transmissions.

The direct digital design strategy consists in an open loop deadbeat estimation cycle, fol-
lowed by a bang-bang control cycle to drive the plant state to the origin. Stability is achieved
with a finite number of transmissions.

The effect of measurement disturbances and model uncertainty will in general prevent finite-
time stability with these schemes. Nevertheless, it would be of interest to quantify and compare
their overall performance with that of approaches based on conventional periodic time-driven
sampling and quantized measurements. This will be the topic of future work.

We believe that the proposed level crossing sampling scheme and control strategies ex-
hibit a clear potential for the development of general systematic asynchronous control design
methods for event-driven sampled-data systems.
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