ELEC4410 Control Systems Design
Lecture 1: Introduction and course outline

Julio Braslavsky

Centre for Complex Dynamic Systems and Control
School of Electrical Engineering and Computer Science
The University of Newcastle

21 July 2008
Outline

1 Motivation for ELEC4410
 - Why study Control Systems Design?
 - Some application examples

2 Course Overview
 - Lecturers
 - Purpose and Objectives
 - Assessment
 - Lectures and communication
Why study Control Systems Design?

Advanced control systems are central to everyday technology applications.
Why study Control Systems Design?

Space communication and exploration would not be possible without control engineering technology.

Satellites

Space exploration
Why study Control Systems Design?

Control engineering is key to

- high performance
- reduced waste and emissions
- energy efficiency
- safety of operation
- high quality production
- operation of complex systems

Julio Braslavsky (CDSC)
Example: Control of an aircraft

2005 Airbus 380: 680 ton maximum take-off weight, 75,000 HP engines
Example: Control of an aircraft

In the beginnings

1894 Hiram Maxim’s flying machine: 3.5 ton, 360 HP engine was state-of-the-art technology. Aerodynamically unstable and uncontrollable, the project was soon abandoned.
Example: Control of an aircraft

Back in the 1890s...

- Aerodynamic principles for wing design were well-understood.
- Lighter and more powerful internal combustion engines had been built.
- Otto Lilienthal built wings capable of carrying him in flight.

However...

- Self-propelled flying machines remained an open challenge.

Pioneers of aeronautics

- Orville and Wilbur Wright, bike designers in Indiana, realised the final problem was control.
Example: Control of an aircraft

Back in the 1890s...

- aerodynamic principles for wing design were well-understood
- lighter and more powerful internal combustion engines had been built
- Otto Lilienthal built wings capable of carrying him in flight

However...

- self-propelled flying machines remained an open challenge

Pioneers of aeronautics

- Orville and Wilbur Wright, bike designers in Indiana, realised the final problem was control
Example: Control of an aircraft

Back in the 1890s...
- aerodynamic principles for wing design were well-understood
- lighter and more powerful internal combustion engines had been built
- Otto Lilienthal built wings capable of carrying him in flight

However...
- self-propelled flying machines remained an open challenge

Pioneers of aeronautics
- Orville and Wilbur Wright, bike designers in Indiana, realised the final problem was control
Example: Control of an aircraft

The flying problem

Wilbur Wright said in 1901:

- Men know how to construct airplanes.
- Men also know how to build engines.
- Inability to **balance** and **steer** still confronts students on **the flying problem**.
- When this one feature has been worked out, the age of flying will have arrived, for all other difficulties are of minor importance.

A control problem:

balance and steer = stabilise and control
Example: Control of an aircraft

The flying problem

Wilbur Wright said in 1901:

- Men know how to construct airplanes.
- Men also know how to build engines.
- Inability to balance and steer still confronts students on the flying problem.
- When this one feature has been worked out, the age of flying will have arrived, for all other difficulties are of minor importance.

A control problem: balance and steer = stabilise and control
Example: Control of an aircraft

The flying problem

Wilbur Wright said in 1901:
- Men know how to construct airplanes.
- Men also know how to build engines.
- Inability to **balance** and **steer** still confronts students on **the flying problem**.

- When this one feature has been worked out, the age of flying will have arrived, for all other difficulties are of minor importance.

A control problem:

balance and steer = stabilise and control
Example: Control of an aircraft

The flying problem

Wilbur Wright said in 1901:
- Men know how to construct airplanes.
- Men also know how to build engines.
- Inability to **balance** and **steer** still confronts students on **the flying problem**.
- When this one feature has been worked out, the age of flying will have arrived, for all other difficulties are of minor importance.

A control problem:
balance and **steer** = stabilise and control
Example: Control of an aircraft

The flying problem

Wilbur Wright said in 1901:

- Men know how to construct airplanes.
- Men also know how to build engines.
- Inability to *balance* and *steer* still confronts students on the flying problem.
- When this one feature has been worked out, the age of flying will have arrived, for all other difficulties are of minor importance.

A control problem:

balance and steer = stabilise and control
Example: Control of an aircraft

Aircraft flight control

The control system of an aircraft consists basically of:

- Flight control surfaces
- Cockpit controls
- Linkage systems
- Engine controls

Flight control surfaces

Allow the pilot to adjust aircraft attitude: rotation around vertical, longitudinal, and lateral axes.

The flying problem

The Wright Brothers had to solve a complex multi-input multi-output (MIMO) control problem!
Example: Control of an aircraft

Aircraft flight control

The control system of an aircraft consists basically of:
- Flight control surfaces
- Cockpit controls
- Linkage systems
- Engine controls

The flying problem

The Wright Brothers had to solve a complex multi-input multi-output (MIMO) control problem!

Flight control surfaces

Allow the pilot to adjust aircraft attitude: rotation around vertical, longitudinal and lateral axes.
Example: Control of an aircraft

Aircraft flight control

The control system of an aircraft consists basically of:
- Flight control surfaces
- Cockpit controls
- Linkage systems
- Engine controls

Flight control surfaces

Allow the pilot to adjust aircraft attitude: rotation around vertical, longitudinal and lateral axes.

The flying problem

The Wright Brothers had to solve a complex multi-input multi-output (MIMO) control problem!
Example: Control of an aircraft

Otto Lilienthal (1848–1896)

Pioneered the idea of increasing pilot control authority to achieve flight stability: he used his body weight to steer and stabilise.

Otto Lilienthal’s glider

Wright’s wing warping idea
Example: Control of an aircraft

Otto Lilienthal (1848–1896)

Pioneered the idea of increasing pilot control authority to achieve flight stability: he used his body weight to steer and stabilise.

Otto Lilienthal’s glider

Wright’s wing warping idea

The Wright brothers improved on Lilienthal’s idea using wing-warping and anhedral wings to increase controllability.
Example: Control of an aircraft

The Wright Brothers solved the flight control problem and flew their glider at Kitty Hawk on December 17, 1903.
Example: Control of an aircraft

Consequences of inadequate control design

- Flight control problems are still current
- 1993 crash of SAABs air-fighter Gripen illustrates the potential dramatic consequences of bad control design
- The control design failed to include **antiwindup** compensation for rate limitations, which originated **pilot induced oscillations**

Saab JAS 39 Gripen
Outline

1 Motivation for ELEC4410
 - Why study Control Systems Design?
 - Some application examples

2 Course Overview
 - Lecturers
 - Purpose and Objectives
 - Assessment
 - Lectures and communication
The ELEC4410 lecturers

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Office</th>
<th>Availability</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg Adams</td>
<td>EAG03d</td>
<td>Wednesdays 10:00 to 12:00</td>
<td>Gregory.Adams@newcastle.edu.au</td>
<td>4921 6033</td>
</tr>
<tr>
<td>Julio Braslavsky</td>
<td>EAG02</td>
<td>Thursdays, 15:00 to 17:00</td>
<td>Julio.Braslavsky@newcastle.edu.au</td>
<td>4921 5740</td>
</tr>
<tr>
<td>Alejandro Rojas</td>
<td>EF07e</td>
<td>Mondays, 15:00 to 17:00</td>
<td>Alejandro.Rojas@newcastle.edu.au</td>
<td>4921 6023</td>
</tr>
<tr>
<td>James Welsh</td>
<td>EAG15</td>
<td>Mondays, 15:00 to 17:00</td>
<td>James.Welsh@newcastle.edu.au</td>
<td>4921 6087</td>
</tr>
</tbody>
</table>
Purpose and objectives

ELEC4410 builds on ELEC4400 introducing modern control techniques and practical implementation issues. It gives:

- An exposure to modern control tools
- An in-depth introduction to the fundamental concepts of linear system theory
- A basic understanding of various factors which limit the achievable control system performance
- Experience in lab implementations of control systems.
- An initial exposure to control implementation issues
- Knowledge of case studies of successful modern control implementations.
Purpose and objectives

ELEC4410 builds on ELEC4400 introducing modern control techniques and practical implementation issues. It gives:

- An exposure to modern control tools
- An in-depth introduction to the fundamental concepts of linear system theory
- A basic understanding of various factors which limit the achievable control system performance
- Experience in lab implementations of control systems
- An initial exposure to control implementation issues
- Knowledge of case studies of successful modern control implementations
Purpose and objectives

ELEC4410 builds on ELEC4400 introducing modern control techniques and practical implementation issues. It gives:

- An exposure to modern control tools
- An in-depth introduction to the fundamental concepts of linear system theory
- A basic understanding of various factors which limit the achievable control system performance
- Experience in lab implementations of control systems.
- An initial exposure to control implementation issues
- Knowledge of case studies of successful modern control implementations.
Purpose and objectives

ELEC4410 builds on ELEC4400 introducing modern control techniques and practical implementation issues. It gives:

- An exposure to modern control tools
- An in-depth introduction to the fundamental concepts of linear system theory
- A basic understanding of various factors which limit the achievable control system performance
- Experience in lab implementations of control systems.
- An initial exposure to control implementation issues
- Knowledge of case studies of successful modern control implementations.
Purpose and objectives

ELEC4410 builds on ELEC4400 introducing modern control techniques and practical implementation issues. It gives:

- An exposure to modern control tools
- An in-depth introduction to the fundamental concepts of linear system theory
- A basic understanding of various factors which limit the achievable control system performance
- Experience in lab implementations of control systems.
- An initial exposure to control implementation issues
- Knowledge of case studies of successful modern control implementations.
Purpose and objectives

ELEC4410 builds on ELEC4400 introducing modern control techniques and practical implementation issues. It gives:

- An exposure to modern control tools
- An in-depth introduction to the fundamental concepts of linear system theory
- A basic understanding of various factors which limit the achievable control system performance
- Experience in lab implementations of control systems.
- An initial exposure to control implementation issues
- Knowledge of case studies of successful modern control implementations.
Topics and assumed knowledge

Topics

- Internal model control (16 hours),
- Fundamental Limitations in Control Design (5 hours),
- Introduction to System Identification (2 hours),
- State Space System Theory (21 hours),
- State Space Control Design (14 hours),
- Optimal Estimation (5 hours),

Assumed Knowledge

- ELEC4400
- Linear algebra and Laplace transforms
- Complex variables and linear ODE
Topics and assumed knowledge

Topics

- Internal model control (16 hours),
- Fundamental Limitations in Control Design (5 hours),
- Introduction to System Identification (2 hours),
- State Space System Theory (21 hours),
- State Space Control Design (14 hours),
- Optimal Estimation (5 hours),

Assumed Knowledge

- ELEC4400
- Linear algebra and Laplace transforms
- Complex variables and linear ODE
Topics and assumed knowledge

Topics

- Internal model control (16 hours),
- Fundamental Limitations in Control Design (5 hours),
- Introduction to System Identification (2 hours),
- State Space System Theory (21 hours),
- State Space Control Design (14 hours),
- Optimal Estimation (5 hours),

Assumed Knowledge

- ELEC4400
- Linear algebra and Laplace transforms
- Complex variables and linear ODE
Topics and assumed knowledge

Topics

- Internal model control (16 hours),
- Fundamental Limitations in Control Design (5 hours),
- Introduction to System Identification (2 hours),
- **State Space System Theory (21 hours),**
- State Space Control Design (14 hours),
- Optimal Estimation (5 hours),

Assumed Knowledge

- ELEC4400
- Linear algebra and Laplace transforms
- Complex variables and linear ODE
Topics and assumed knowledge

Topics

- Internal model control (16 hours),
- Fundamental Limitations in Control Design (5 hours),
- Introduction to System Identification (2 hours),
- State Space System Theory (21 hours),
- State Space Control Design (14 hours),
- Optimal Estimation (5 hours),

Assumed Knowledge

- ELEC4400
- Linear algebra and Laplace transforms
- Complex variables and linear ODE
Topics and assumed knowledge

Topics

- Internal model control (16 hours),
- Fundamental Limitations in Control Design (5 hours),
- Introduction to System Identification (2 hours),
- State Space System Theory (21 hours),
- State Space Control Design (14 hours),
- Optimal Estimation (5 hours),

Assumed Knowledge

- ELEC4400
- Linear algebra and Laplace transforms
- Complex variables and linear ODE
Topics and assumed knowledge

Topics

- Internal model control (16 hours),
- Fundamental Limitations in Control Design (5 hours),
- Introduction to System Identification (2 hours),
- State Space System Theory (21 hours),
- State Space Control Design (14 hours),
- Optimal Estimation (5 hours),

Assumed Knowledge

- ELEC4400
- Linear algebra and Laplace transforms
- Complex variables and linear ODE
Assessment and workload

The course will be assessed as follows:

- **Assignments (15%)**
- **Labs (10%)**
- **Quiz (15%)**
- **Exam (60%)**

Weekly assignments (individual or group of 2) (10%)

Paper review presentation (group of 2) (5%)

Groups of at most 3 students

1 compulsory lab, 4 elective labs

17 September 2008, 8am-10am, EF14

open book, covering first 8 weeks

40% min required to pass final exam
Assessment and workload

The course will be assessed as follows:

- Assignments (15%)
- Labs (10%)
- Quiz (15%)
- Exam (60%)

Weekly assignments (individual or group of 2) (10%)
Paper review presentation (group of 2) (5%)

Groups of at most 3 students
1 compulsory lab, 4 elective labs

17 September 2008, 8am-10am, EF14
open book, covering first 8 weeks

40% min required to pass final exam
Assessment and workload

The course will be assessed as follows:

- Assignments (15%)
- Labs (10%)
- Quiz (15%)
- Exam (60%)

Weekly assignments (individual or group of 2) (10%)
Paper review presentation (group of 2) (5%)

Groups of at most 3 students
1 compulsory lab, 4 elective labs

17 September 2008, 8am-10am, EF14
open book, covering first 8 weeks

40% min required to pass final exam
Assessment and workload

The course will be assessed as follows:

- Assignments (15%)
- Labs (10%)
- Quiz (15%)
- Exam (60%)

Weekly assignments (individual or group of 2) (10%)
Paper review presentation (group of 2) (5%)

Groups of at most 3 students
1 compulsory lab, 4 elective labs

17 September 2008, 8am-10am, EF14
open book, covering first 8 weeks

40% min required to pass final exam
Contact

Lecture times

<table>
<thead>
<tr>
<th>Activity</th>
<th>Day</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Monday</td>
<td>10:00–12:00</td>
<td>EAG01</td>
</tr>
<tr>
<td>Tutorial</td>
<td>Wednesday</td>
<td>08:00–10:00</td>
<td>EF14/ES204</td>
</tr>
<tr>
<td>Lecture</td>
<td>Thursday</td>
<td>13:00–15:00</td>
<td>EAG01</td>
</tr>
</tbody>
</table>

Communication

Course information, assignments, timetables, announcements and materials, will be regularly posted in Blackboard.

Enrolled students should visit Blackboard regularly!
Contact

Lecture times

<table>
<thead>
<tr>
<th>Activity</th>
<th>Day</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Monday</td>
<td>10:00–12:00</td>
<td>EAG01</td>
</tr>
<tr>
<td>Tutorial</td>
<td>Wednesday</td>
<td>08:00–10:00</td>
<td>EF14/ES204</td>
</tr>
<tr>
<td>Lecture</td>
<td>Thursday</td>
<td>13:00–15:00</td>
<td>EAG01</td>
</tr>
</tbody>
</table>

Communication

Course information, assignments, timetables, announcements and materials, will be regularly posted in Blackboard.

Enrolled students should visit Blackboard regularly!
Contact

Lecture times

<table>
<thead>
<tr>
<th>Activity</th>
<th>Day</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Monday</td>
<td>10:00–12:00</td>
<td>EAG01</td>
</tr>
<tr>
<td>Tutorial</td>
<td>Wednesday</td>
<td>08:00–10:00</td>
<td>EF14/ES204</td>
</tr>
<tr>
<td>Lecture</td>
<td>Thursday</td>
<td>13:00–15:00</td>
<td>EAG01</td>
</tr>
</tbody>
</table>

Communication

Course information, assignments, timetables, announcements and materials, will be regularly posted in Blackboard.

Enrolled students should visit Blackboard regularly!