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Brief Review of Discrete-Time Systems

Discrete-time systems are systems that are digital or arise from

the sampling of a continuous-time system. An example, is the

control of a continuous-time system through a digital processor.
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The continuous-time system, as seen from the discrete processor,

is a discrete-time system.

Signals in a discrete-time system are not defined for all time

t ∈ R, but only for t in a countable (although maybe infinite) set.

Thus, we can always assume t = 0, 1, 2, 3, 4, . . . .
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Brief Review of Discrete-Time Systems

Define the impulse sequence δ[k] as

δ[k − m] =





1 if k = m

0 if k 6= m
where k and m are integers.

m + 1m
k

δ[k − m]

In the discrete-time case impulses are easy to implement

physically, in contrast to the continuous-time case.

A sequence u[k] can be represented by means of the series

u[k] =

∞∑

m=−∞

u[m] δ[k − m] .
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Brief Review of Discrete-Time Systems

Let g[k − m] denote the response of a causal, discrete-time

linear time-invariant (LTI) system to a unit impulse applied at the

instant m.

m + 1m

k

G

g[k − m]

k
m

δ[k − m]

Then the output of the system to an arbitrary input sequence

u[k] is given the discrete convolution

y[k] =

∞∑

k=0

g[k − m] u[m]

=

∞∑

k=0

g[m] u[k − m].
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Brief Review of Discrete-Time Systems

The z-transform is an important tool in the study of LTI

discrete-time systems. Denote by Y(z) the z-transform of the

sequence y[k], defined as

Y(z) , Z
{
y[k]

}
,

∞∑

k=0

y[k] z−k. (Z)

Using the discrete convolution representation of y[k] in (Z),

Y(z) =

∞∑

k=0

( ∞∑

m=0

g[k − m] u[m]

)

z
−k
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Brief Review of Discrete-Time Systems

The z-transform is an important tool in the study of LTI

discrete-time systems. Denote by Y(z) the z-transform of the

sequence y[k], defined as

Y(z) , Z
{
y[k]

}
,

∞∑

k=0

y[k] z−k. (Z)

Using the discrete convolution representation of y[k] in (Z),

Y(z) =

∞∑

k=0

( ∞∑

m=0

g[k − m] u[m]

)

z
−k+m

z
−m

=

∞∑

m=0

( ∞∑

k=0

g[k − m] z
−(k−m)

)

u[m] z
−m
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Brief Review of Discrete-Time Systems

The z-transform is an important tool in the study of LTI

discrete-time systems. Denote by Y(z) the z-transform of the

sequence y[k], defined as

Y(z) , Z
{
y[k]

}
,

∞∑

k=0

y[k] z−k. (Z)

Using the discrete convolution representation of y[k] in (Z),

Y(z) =

∞∑

k=0

( ∞∑

m=0

g[k − m] u[m]

)

z
−k+m

z
−m

=

∞∑

m=0

( ∞∑

k=0

g[k − m] z
−(k−m)

)

u[m] z
−m

=

( ∞∑

l=0

g[l] z
−l

)

︸ ︷︷ ︸
G(z)

( ∞∑

m=0

u[m] z
−m

)

︸ ︷︷ ︸
U(z)

Lecture 11: State Space Equations – p. 6/41



The University of Newcastle

Brief Review of Discrete-Time Systems

The z-transform is an important tool in the study of LTI

discrete-time systems. Denote by Y(z) the z-transform of the

sequence y[k], defined as

Y(z) , Z
{
y[k]

}
,

∞∑

k=0

y[k] z−k. (Z)

Using the discrete convolution representation of y[k] in (Z),

Y(z) =

∞∑

k=0

( ∞∑

m=0

g[k − m] u[m]

)

z
−k+m

z
−m

=

∞∑

m=0

( ∞∑

k=0

g[k − m] z
−(k−m)

)

u[m] z
−m

=

( ∞∑

l=0

g[l] z
−l

)

︸ ︷︷ ︸
G(z)

( ∞∑

m=0

u[m] z
−m

)

︸ ︷︷ ︸
U(z)

= G(z)U(z).
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Brief Review of Discrete-Time Systems

The equation

Y(z) = G(z)U(z)

is the discrete counterpart of the transfer function

representation Y(s) = G(s)U(s) for continuous-time systems.

The function G(z) is the z-transform of the impulse response

sequence g[k] and is called the discrete transfer function.

Both the discrete convolution and transfer function describe

the system assuming zero initial conditions.
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Brief Review of Discrete-Time Systems

Example. Consider the unit-sampling-time delay system defined

by

y[k] = u[k − 1].

The output equals the input delayed by one sampling period. Its

impulse response sequence is g[k] = δ[k − 1] and its discrete

transfer function is

G(z) = Z{δ[k − 1]} = z−1 =
1

z
.

It is a rational function of z. Note that every continuous-time

system involving a time-delay is a distributed system. This is not so

in discrete-time systems.
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Brief Review of Discrete-Time Systems

Example. Consider the discrete-time system of the block

diagram below.

kc c-- -

6

-

Gain

a

y[k]

z−1

Unit time delay

u[k]r[k]
+

+

If the unit-sampling-time delay is replaced by its discrete transfer

function z−1, then the discrete transfer function from r to y can

be computed as

G(z) =
az−1

1 − az−1
=

a

z − a
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Brief Review of Discrete-Time Systems

Example (continuation). On the other hand, let the reference

input r be a unit impulse δ[k]. By assuming y[0] = 0, we have

y[0] = 0, y[1] = a, y[2] = a2, y[2] = a3, . . .

Thus,

y[k] = g[k] = aδ[k − 1] + a2δ[k − 2] + · · · =

∞∑

m=0

amδ[k − m].

Because Z{δ[k − m]} = z−m, the transfer function of the system is

G(z) = Z{g[k]} = az−1 + a2z−2 + a3z−3 + · · ·

= az−1

∞∑

m=0

(

az−1
)m

=
az−1

1 − az−1
,

the same result as before.
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Brief Review of Discrete-Time Systems

Example (continuation). The plot shows the step response of the

system for different values of a.
Step Response
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Brief Review of Discrete-Time Systems

Every discrete-time, finite dimensional, linear system can be

represented by state space difference equations, as in

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k] .

The relation between discrete transfer function representation

and state space representation is identical to the

continuous-time case,

Ĝ(z) = C(zI − A)−1B + D ,

and the same MATLAB functions can be used to define systems,

e.g.,

1 G1 = ss(A,B,C,D,T);

2 G2 = tf(Num,Den,T);
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Summary on Discrete-Time Systems

Most of the state space concepts for linear continuous-time

systems directly translate to discrete-time systems, described

by linear difference equations. In this case the time variable t

only takes values a set like {0, 1, 2, . . . }.
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Summary on Discrete-Time Systems

Most of the state space concepts for linear continuous-time

systems directly translate to discrete-time systems, described

by linear difference equations. In this case the time variable t

only takes values a set like {0, 1, 2, . . . }.

When the discrete-time system is obtained by sampling a

continuous-time system, we have that t = kT , k = 0, 1, 2, . . . ,

where T is the sampling period. We denote the discrete-time

variables (sequences) as u[k] , u(kT).
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continuous-time system, we have that t = kT , k = 0, 1, 2, . . . ,

where T is the sampling period. We denote the discrete-time

variables (sequences) as u[k] , u(kT).

Finite dimensionality, causality, linearity and the superposition

principle for responses to initial conditions and inputs are

exactly the same as those in the continuous-time case.
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Summary on Discrete-Time Systems

Most of the state space concepts for linear continuous-time

systems directly translate to discrete-time systems, described

by linear difference equations. In this case the time variable t

only takes values a set like {0, 1, 2, . . . }.

When the discrete-time system is obtained by sampling a

continuous-time system, we have that t = kT , k = 0, 1, 2, . . . ,

where T is the sampling period. We denote the discrete-time

variables (sequences) as u[k] , u(kT).

Finite dimensionality, causality, linearity and the superposition

principle for responses to initial conditions and inputs are

exactly the same as those in the continuous-time case.

One difference though: pure delays in discrete-time do not

give raise to an infinite-dimensional system, as is the case for

continuous-time systems, if the delay is a multiple of the

sampling period T .
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Solution of LTI State Equations

As we have seen, linear systems can be represented by means

of a convolution integral and, if they are finite-dimensional, also

by means of state space equations.

We are interested in obtaining y(t) for t ≥ t0, given the value of

u(t) for all t ∈ [t0, t].

There is no simple analytical form to solve the convolution

integral

y(t) =

∫t

t0

g(t, τ)u(τ)dτ.
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Solution of LTI State Equations

As we have seen, linear systems can be represented by means

of a convolution integral and, if they are finite-dimensional, also

by means of state space equations.

We are interested in obtaining y(t) for t ≥ t0, given the value of

u(t) for all t ∈ [t0, t].

There is no simple analytical form to solve the convolution

integral

y(t) =

∫t

t0

g(t, τ)u(τ)dτ.

Probably, the simplest way would be to compute it

numerically, for which we would need first to approximate it

by performing a discretisation.
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Solution of LTI State Equations

When the system has finite dimensions, the most efficient way to

compute y(t) is to obtain a representation in state equations of

the convolution integral (that is, a state space realisation) and

solve the equations

ẋ(t) = A(t)x(t) + B(t)u(t) (SE)

y(t) = C(t)x(t) + D(t)u(t) . (OE)
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Solution of LTI State Equations

When the system has finite dimensions, the most efficient way to

compute y(t) is to obtain a representation in state equations of

the convolution integral (that is, a state space realisation) and

solve the equations

ẋ(t) = A(t)x(t) + B(t)u(t) (SE)

y(t) = C(t)x(t) + D(t)u(t) . (OE)

We will only consider the LTI case, i.e., when A, B, C, D are

constant matrices. We start by looking for the solution x(t) to the

equation

ẋ(t) = Ax(t) + Bu(t)

with a given initial state x(0) and input u(t), t ≥ 0.
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Solution of LTI State Equations

One way to find the solution in this case, because it is simple, is to

postulate a candidate solution x(t) and then check that it

satisfies the equation.
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Solution of LTI State Equations

One way to find the solution in this case, because it is simple, is to

postulate a candidate solution x(t) and then check that it

satisfies the equation.

We know that for a scalar (x(t) ∈ R) equation

ẋ(t) = ax(t)

the solution has the form x(t) = eatx(0).
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Solution of LTI State Equations

One way to find the solution in this case, because it is simple, is to

postulate a candidate solution x(t) and then check that it

satisfies the equation.

We know that for a scalar (x(t) ∈ R) equation

ẋ(t) = ax(t)

the solution has the form x(t) = eatx(0). Thus, we can

reasonably assume that x(t) in the matrix equation

ẋ(t) = Ax(t)

will involve the matrix exponential eAt.

We make a brief detour from the solution of the state equation to

review a few facts about the matrix exponential.
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The Matrix Exponential

For any square matrix M, the matrix exponential eM is a

square matrix function. In MATLAB, eA is computed with the

function expm(M), which uses the Padé approximation.

Lecture 11: State Space Equations – p. 18/41



The University of Newcastle

The Matrix Exponential

For any square matrix M, the matrix exponential eM is a

square matrix function. In MATLAB, eA is computed with the

function expm(M), which uses the Padé approximation.

Note the difference with the MATLAB function exp(M), which

computes the matrix of exponentials of the elements of M.

Lecture 11: State Space Equations – p. 18/41



The University of Newcastle

The Matrix Exponential

For any square matrix M, the matrix exponential eM is a

square matrix function. In MATLAB, eA is computed with the

function expm(M), which uses the Padé approximation.

Note the difference with the MATLAB function exp(M), which

computes the matrix of exponentials of the elements of M.

Because the Taylor expansion

eλt = 1 + λt + λ2t2

2!
+ · · · + λntn

n!
+ · · · converges for all finite

λ and t, we have that for matrices

eAt = I + tA +
t2

2!
A + · · · =

∞∑

k=0

tk

k!
Ak . (TE)
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The Matrix Exponential

By using the Taylor expansion (TE) it’s easy to show the following

first three important properties of the matrix exponential eAt

e0 = I , (P1)

eA(t1+t2) = eAt1eAt2 , (P2)

d

dt
eAt = AeAt = eAtA , (P3)

(

eAt
)−1

= e−At . (P4)

Exercise: Prove property (P4). Note that in general

e(A+B)t 6= eAteBt (Why?).

Matrix differentiation and integration applies element-wise.

Lecture 11: State Space Equations – p. 19/41



The University of Newcastle

Solution of LTI State Equations

We now return to the solution of the state equation

ẋ(τ) = Ax(τ) + Bu(τ).

Following the scalar case, we multiply (from the right) both sides

of the equation by e−Aτ to obtain

e−Aτẋ(τ) − e−AτAx(τ) = e−AτBu(τ)

⇔
d

dτ

(

e−Aτx(τ)
)

= e−AτBu(τ), by (P3).
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Solution of LTI State Equations

We now return to the solution of the state equation

ẋ(τ) = Ax(τ) + Bu(τ).

Following the scalar case, we multiply (from the right) both sides

of the equation by e−Aτ to obtain

e−Aτẋ(τ) − e−AτAx(τ) = e−AτBu(τ)

⇔
d

dτ

(

e−Aτx(τ)
)

= e−AτBu(τ), by (P3).

Integration of the last equation between 0 and t yields

e−Aτx(τ)
∣

∣

t

τ=0
=

∫t

0

e−AτBu(τ)dτ.
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Solution of LTI State Equations

In other words, from the last equation we have that

e−Atx(t) − e0x(0) =

∫t

0

e−AτBu(τ)dτ.
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Solution of LTI State Equations

In other words, from the last equation we have that

e−Atx(t) − e0x(0) =

∫t

0

e−AτBu(τ)dτ.

Because the inverse of e−At is eAt and e0 = I,
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Solution of LTI State Equations

In other words, from the last equation we have that

e−Atx(t) − e0x(0) =

∫t

0

e−AτBu(τ)dτ.

Because the inverse of e−At is eAt and e0 = I, we finally have

that the solution of the state equation is given by

x(t) = eAtx(0) +

∫t

0

eA(t−τ)Bu(τ)dτ. (PVF)
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Solution of LTI State Equations

In other words, from the last equation we have that

e−Atx(t) − e0x(0) =

∫t

0

e−AτBu(τ)dτ.

Because the inverse of e−At is eAt and e0 = I, we finally have

that the solution of the state equation is given by

x(t) = eAtx(0) +

∫t

0

eA(t−τ)Bu(τ)dτ. (PVF)

Equation (PVF) is the general solution of the state equation (SE),

and is sometimes referred to as the Parameter Variation Formula.
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Solution of LTI State Equations

Now that we have the solution to the equation

ẋ(t) = Ax(t) + Bu(t),

we conclude by replacing x(t) into the algebraic output

equation

y(t) = Cx(t) + Du(t),

y(t) = CeAtx(0) + C

∫t

0

eA(t−τ)Bu(τ)dτ + Du(t) (OR)

the response to initial conditions

and the response to the input.
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Solution of LTI State Equations

Now that we have the solution to the equation

ẋ(t) = Ax(t) + Bu(t),

we conclude by replacing x(t) into the algebraic output

equation

y(t) = Cx(t) + Du(t),

and obtain

y(t) = CeAtx(0) + C

∫t

0

eA(t−τ)Bu(τ)dτ + Du(t) (OR)

the response to initial conditions

and the response to the input.
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Solution of LTI State Equations

Now that we have the solution to the equation

ẋ(t) = Ax(t) + Bu(t),

we conclude by replacing x(t) into the algebraic output

equation

y(t) = Cx(t) + Du(t),

and obtain

y(t) = CeAtx(0) + C

∫t

0

eA(t−τ)Bu(τ)dτ + Du(t) (OR)

Notice the superposition of the response to initial conditions and

the response to the input.
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Solution of LTI State Equations

An alternative way to compute the solution of the state space

equation is via the Laplace Transform.

Apply the Laplace Transform to the state and output

equations (SE) and (OE) to obtain

X(s) = (sI − A)−1 [x(0) + BU(s)]

Y(s) = C(sI − A)−1 [x(0) + BU(s)] + DU(s).
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equation is via the Laplace Transform.
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Then solve the above algebraic equations to compute Y(s).
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Solution of LTI State Equations

An alternative way to compute the solution of the state space

equation is via the Laplace Transform.

Apply the Laplace Transform to the state and output

equations (SE) and (OE) to obtain

X(s) = (sI − A)−1 [x(0) + BU(s)]

Y(s) = C(sI − A)−1 [x(0) + BU(s)] + DU(s).

Then solve the above algebraic equations to compute Y(s).

Finally, anti-transform Y(s) to go back to the time domain

and obtain y(t).
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Zero-Input Response

We discuss a general property of the zero-input response

eAtx(0). Suppose that we have a matrix A whose Jordan form is

Ā = Q−1AQ =

[

λ1 1 0
0 λ1 0
0 0 λ2

]

where Q is a nonsingular matrix that makes the change of

coordinates that brings A to Ā. (Given any matrix A, there is

always a nonsingular matrix Q that gives its Jordan form

Ā = Q−1AQ as above.)
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Zero-Input Response

We discuss a general property of the zero-input response

eAtx(0). Suppose that we have a matrix A whose Jordan form is

Ā = Q−1AQ =

[

λ1 1 0
0 λ1 0
0 0 λ2

]

where Q is a nonsingular matrix that makes the change of

coordinates that brings A to Ā. (Given any matrix A, there is

always a nonsingular matrix Q that gives its Jordan form

Ā = Q−1AQ as above.)

The scalars λ1 and λ2 are the eigenvalues of Ā, which are also

those of A. The matrix exponential of a matrix in its Jordan form is

easy to compute. For the above example we have

eĀt =

[

eλ1t teλ1t 0
0 eλ1t 0
0 0 eλ2t

]
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Zero-Input Response

The matrix exponential of A is obtained from that of Ā by

changing back the coordinates,

eAt = QeĀtQ−1.
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Zero-Input Response

The matrix exponential of A is obtained from that of Ā by

changing back the coordinates,

eAt = QeĀtQ−1.

Thus, we see that the general response of the system to initial

conditions is a linear combination of the terms eλ1t, teλ1t and

eλ2t,

x(t) = eAtx(0) = Q









eλ1t teλ1t 0

0 eλ1t 0

0 0 eλ2t









Q−1x(0)
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Zero-Input Response

The matrix exponential of A is obtained from that of Ā by

changing back the coordinates,

eAt = QeĀtQ−1.

Thus, we see that the general response of the system to initial

conditions is a linear combination of the terms eλ1t, teλ1t and

eλ2t,

x(t) = eAtx(0) = Q









eλ1t teλ1t 0

0 eλ1t 0

0 0 eλ2t









Q−1x(0)

If all eigenvalues of A have negative real parts, the system re-

sponse to initial conditions will decay to zero as t → ∞. Otherwise,

the response may grow unbounded.
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Computing the Matrix Exponential

Formulas (PVF) or (OR) require the matrix exponential eAt. The

Taylor expansion (TE) could be a way to compute eAt, since it

only involves matrix multiplications and sums, although an infinite

number of them.

However, there are several better ways to compute the matrix

exponential, among others:

the Laplace Transform method
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Computing the Matrix Exponential

Formulas (PVF) or (OR) require the matrix exponential eAt. The

Taylor expansion (TE) could be a way to compute eAt, since it

only involves matrix multiplications and sums, although an infinite

number of them.

However, there are several better ways to compute the matrix

exponential, among others:

the Laplace Transform method

the Jordan decomposition method

Lecture 11: State Space Equations – p. 26/41



The University of Newcastle

Computing the Matrix Exponential

Formulas (PVF) or (OR) require the matrix exponential eAt. The

Taylor expansion (TE) could be a way to compute eAt, since it

only involves matrix multiplications and sums, although an infinite

number of them.

However, there are several better ways to compute the matrix

exponential, among others:

the Laplace Transform method

the Jordan decomposition method

the Cayley-Hamilton Theorem method
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Computing the Matrix Exponential

Formulas (PVF) or (OR) require the matrix exponential eAt. The

Taylor expansion (TE) could be a way to compute eAt, since it

only involves matrix multiplications and sums, although an infinite

number of them.

However, there are several better ways to compute the matrix

exponential, among others:

the Laplace Transform method

the Jordan decomposition method

the Cayley-Hamilton Theorem method

See e.g., C.-T. Chen, Linear System Theory and Design. Oxford

University Press, 1999.
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Computing the Matrix Exponential

Formulas (PVF) or (OR) require the matrix exponential eAt. The

Taylor expansion (TE) could be a way to compute eAt, since it

only involves matrix multiplications and sums, although an infinite

number of them.

However, there are several better ways to compute the matrix

exponential, among others:

the Laplace Transform method

the Jordan decomposition method

the Cayley-Hamilton Theorem method

See e.g., C.-T. Chen, Linear System Theory and Design. Oxford

University Press, 1999. We will now have a look at the first

method.
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Matrix Exponential Via Laplace Transform

From property (P3), we have that

d

dt
eAt = AeAt, with eA0 = I.

The Laplace transform of this equation yields

L

{
d

dt
eAt

}
= sL{eAt} − I = AL{eAt},
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Matrix Exponential Via Laplace Transform

From property (P3), we have that

d

dt
eAt = AeAt, with eA0 = I.

The Laplace transform of this equation yields

L

{
d

dt
eAt

}
= sL{eAt} − I = AL{eAt},

hence,

(sI − A) L{eAt} = I

⇔ L{eAt} = (sI − A)
−1

⇔ eAt = L−1
{

(sI − A)
−1

}
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Matrix Exponential Via Laplace Transform

Example. We consider the LTI equation

ẋ(t) =





0 −1

1 −2



 x(t) +





0

1



 u(t)
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Matrix Exponential Via Laplace Transform

Example. We consider the LTI equation

ẋ(t) =





0 −1

1 −2



 x(t) +





0

1



 u(t)

Its solution is given by Equation (PVF). We compute eAt via the

Laplace Transform method. The inverse of sI − A is

(sI − A)−1 =





s 1

−1 s + 2





−1

=
1

(s + 1)2





s + 2 −1

1 s





=





(s + 2)/(s + 1)2 −1/(s + 1)2

1/(s + 1)2 s/(s + 1)2




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Matrix Exponential Via Laplace Transform

Example (continuation). The matrix eAt is the Laplace

anti-transform of (sI − A)−1, which we obtain by performing an

expansion in simple fractions and using a table of Laplace

Transform pairs (or in MATLAB, with the symbolic tool-box, by using

the function ilaplace).
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Matrix Exponential Via Laplace Transform

Example (continuation). The matrix eAt is the Laplace

anti-transform of (sI − A)−1, which we obtain by performing an

expansion in simple fractions and using a table of Laplace

Transform pairs (or in MATLAB, with the symbolic tool-box, by using

the function ilaplace).

L−1










(s+2)

(s+1)2

−1
(s+1)2

1
(s+1)2

s
(s+1)2









=





(1 + t)e−t −te−t

te−t (1 − t)e−t



 .
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Matrix Exponential Via Laplace Transform

Example (continuation). The matrix eAt is the Laplace

anti-transform of (sI − A)−1, which we obtain by performing an

expansion in simple fractions and using a table of Laplace

Transform pairs (or in MATLAB, with the symbolic tool-box, by using

the function ilaplace).

L−1










(s+2)

(s+1)2

−1
(s+1)2

1
(s+1)2

s
(s+1)2









=





(1 + t)e−t −te−t

te−t (1 − t)e−t



 .

Finally, by using the Parameter Variation Formula (PVF)

x(t) =





(1 + t)e−tx1(0) − te−tx2(0)

te−tx1(0) + (1 − t)e−tx2(0)



+





−
∫t

0
(t − τ)e−(t−τ)u(τ)dτ

∫t

0
[1 − (t − τ)]e−(t−τ)u(τ)dτ



 .
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Outline

Brief Review of Discrete-Time Systems

Solution of LTI State Equations

Solution of Continuous-Time State Equations

The Matrix Exponential

Discretisation of LTI Systems

Solution of Discrete-Time State Equations
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Discretisation

The operation by which a continuous-time model is converted

into a discrete-time one is called discretisation.

A discrete-time model is often needed, for example to simulate it

with a digital computer; or to design a discrete-time controller,

which is also implemented in some kind of digital computer.
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Discretisation

The operation by which a continuous-time model is converted

into a discrete-time one is called discretisation.

A discrete-time model is often needed, for example to simulate it

with a digital computer; or to design a discrete-time controller,

which is also implemented in some kind of digital computer.

The Parameter Variation Formula yields a direct method for

discretisation of a continuous-time system state space model.

D/A

T

A/D
Gd(z)

y[k]u[k]
ẋ =Ax+Bu
y =Cx+Du
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Discretisation

Consider a continuous-time, LTI system G represented by the

state equations

G ,





ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) .

We are after a discrete-time state equation representation

Gd ,





x[k + 1] = Adx[k] + Bdu[k]

y[k] = Cdx[k] + Ddu[k] .

assuming that the plant has zero order hold at its input and a

sampler at its output. We will see two methods:

Simple (but approximate) discretisation
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Discretisation

Consider a continuous-time, LTI system G represented by the

state equations

G ,





ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) .

We are after a discrete-time state equation representation

Gd ,





x[k + 1] = Adx[k] + Bdu[k]

y[k] = Cdx[k] + Ddu[k] .

assuming that the plant has zero order hold at its input and a

sampler at its output. We will see two methods:

Simple (but approximate) discretisation

Exact discretisation
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Simple (But Approximate) Discretisation

This is the most intuitive approach. The simplest way to obtain a

discrete model from a continuous-time system regularly sampled

with period T is by using Euler’s approximation,

ẋ(t) ≈
x(t + T) − x(t)

T
,

to obtain x(t + T) = x(t) + Ax(t)T + Bu(t)T .
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Simple (But Approximate) Discretisation

This is the most intuitive approach. The simplest way to obtain a

discrete model from a continuous-time system regularly sampled

with period T is by using Euler’s approximation,

ẋ(t) ≈
x(t + T) − x(t)

T
,

to obtain x(t + T) = x(t) + Ax(t)T + Bu(t)T . If we are only

interested in the evolution of the system at the sampling instants,

t = kT , k = 0, 1, 2 . . . , we arrive to the model

x[k + 1] = (I + AT)
︸ ︷︷ ︸

Ad

x[k] + BT︸︷︷︸
Bd

u[k].
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Simple (But Approximate) Discretisation

This is the most intuitive approach. The simplest way to obtain a

discrete model from a continuous-time system regularly sampled

with period T is by using Euler’s approximation,

ẋ(t) ≈
x(t + T) − x(t)

T
,

to obtain x(t + T) = x(t) + Ax(t)T + Bu(t)T . If we are only

interested in the evolution of the system at the sampling instants,

t = kT , k = 0, 1, 2 . . . , we arrive to the model

x[k + 1] = (I + AT)
︸ ︷︷ ︸

Ad

x[k] + BT︸︷︷︸
Bd

u[k].

This discrete model is simple to obtain, although inexact even at

the sampling instants.
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Exact Discretisation

An exact discrete model of the continuous time system may be

obtained by using the PVF. Note that the output of the zero order

hold (D/A) is kept constant during each sampling period T until

the new sample arrives,

u(t) = u(kT) , u[k] para t : kT ≤ t < (k + 1)T .
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Exact Discretisation

An exact discrete model of the continuous time system may be

obtained by using the PVF. Note that the output of the zero order

hold (D/A) is kept constant during each sampling period T until

the new sample arrives,

u(t) = u(kT) , u[k] para t : kT ≤ t < (k + 1)T .

Now, for this sectionally constant input, we evaluate the state of

the continuous-time system at the sampling instant t = (k + 1)T ,

x[k+1] , x((k+1)T) = e
A(k+1)T

x(0)+

∫ (k+1)T

0

e
A((k+1)T −τ)

Bu(τ)dτ

= e
AT

(

e
AkT

x(0) +

∫kT

0

e
A(kT −τ)

Bu(τ)dτ

)

︸ ︷︷ ︸
x[k]

+

∫ (k+1)T

kT

e
A((k+1)T −τ)

Bu[k]dτ

= e
AT

x[k]+

(∫T

0

e
Aσ

dσ

)

Bu[k]. (where we used σ = (k + 1)T − τ).
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Exact Discretisation

Thus, we have arrived at the discrete-time model

x[k + 1] = Adx[k] + Bdu[k]

y[k] = Cdx[k] + Ddu[k],

where

Ad , eAT , Bd ,

∫T

0

eAτdτB , Cd , C , Dd , D .
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Exact Discretisation

Thus, we have arrived at the discrete-time model

x[k + 1] = Adx[k] + Bdu[k]

y[k] = Cdx[k] + Ddu[k],

where

Ad , eAT , Bd ,

∫T

0

eAτdτB , Cd , C , Dd , D .

This discrete model gives the exact value of the variables at

time t = kT . In MATLAB the function [Ad,Bd] = c2d(A,B,T)

computes Ad and Bd using the above expressions.
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Exact Discretisation

Thus, we have arrived at the discrete-time model

x[k + 1] = Adx[k] + Bdu[k]

y[k] = Cdx[k] + Ddu[k],

where

Ad , eAT , Bd ,

∫T

0

eAτdτB , Cd , C , Dd , D .

This discrete model gives the exact value of the variables at

time t = kT . In MATLAB the function [Ad,Bd] = c2d(A,B,T)

computes Ad and Bd using the above expressions.

By using the equality A
∫T

0
eAτdτ = eAT − I, if A is non singular, a

quick way to compute Bd is from the formula

Bd = A−1(Ad − I)B , if det{A} 6= 0.
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Exact Discretisation

Example. Consider the scalar system

ẋ(t) = −2x(t) + u(t), y(t) = x(t).

We wish to obtain a discrete-time model of the system sampled

with period T , and assuming a ZOH at its input.

c ccc--- -@@ZOH

T

ẋ = −2x + u

y = x
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Exact Discretisation

Example. Consider the scalar system

ẋ(t) = −2x(t) + u(t), y(t) = x(t).

We wish to obtain a discrete-time model of the system sampled

with period T , and assuming a ZOH at its input.

c ccc--- -@@ZOH

T

ẋ = −2x + u

y = x

The approximate discretisation from Euler’s formula yields

x[k + 1] = (1 − 2T)x[k] + Tu[k],
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Exact Discretisation

Example. Consider the scalar system

ẋ(t) = −2x(t) + u(t), y(t) = x(t).

We wish to obtain a discrete-time model of the system sampled

with period T , and assuming a ZOH at its input.

c ccc--- -@@ZOH

T

ẋ = −2x + u

y = x

The approximate discretisation from Euler’s formula yields

x[k + 1] = (1 − 2T)x[k] + Tu[k],

while the exact discretisation via the PVF yields

x[k + 1] = e−2T x[k] +

(

1 − e−2T

2

)

u[k].
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Exact Discretisation

Example (continuation). The plot shows the step response of the

original continuous-time system, and that of its approximate and

exact discretisations with T = 0.2.
Step Response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Continuous−Time
Approx. Discretisation
Exact Discretisation
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MATLAB code to generate the plot

1 % Discrete.m

2 % Matlab script for an example to compare exact with approximate

3 % discretisation

4 % Sampling time

5 T=0.2;

6 % Continuous-time system

7 G=ss(-2,1,1,0);

8 % Approximate discretisation

9 G1=ss((1-2*T),T,1,0,T);

10 % Exact discretisation

11 G2=ss(exp(-2*T),(1-exp(-2*T))/2,1,0,T);

12 % Step responses

13 step(G,’b’,G1,’g-.’,G2,’r--’)

14 legend(’Continuous-Time’,’Approx. Discretisation’,[’Exact ’ ...

15 ’Discretisation’],4)

16 hold off

Lecture 11: State Space Equations – p. 38/41



The University of Newcastle

Solution of Discrete-Time State Equations

The solution of discrete-time state equations is considerably

simpler that that of continuous-time state equations. From

x[k + 1] = Ax[k] + Bu[k]

we have

x[1] = Ax[0] + Bu[0]

x[2] = Ax[1] + Bu[1] = A2x[0] + ABu[0] + Bu[1].
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Solution of Discrete-Time State Equations

The solution of discrete-time state equations is considerably

simpler that that of continuous-time state equations. From

x[k + 1] = Ax[k] + Bu[k]

we have

x[1] = Ax[0] + Bu[0]

x[2] = Ax[1] + Bu[1] = A2x[0] + ABu[0] + Bu[1].

By proceeding forward we readily obtain, for k > 0,

x[k] = A
k
x[0] +

k−1∑

m=0

A
k−1−m

Bu[m]

y[k] = CA
k
x[0] +

k−1∑

m=0

CA
k−1−m

Bu[m] + Du[k] .
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Discrete-Time Zero-Input Response

We now discuss the zero-input response x[k] = Akx[0] of a

discrete-time system. Consider a matrix A whose Jordan form is

Ā = Q−1AQ =

[

λ1 1 0
0 λ1 0
0 0 λ2

]
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Discrete-Time Zero-Input Response

We now discuss the zero-input response x[k] = Akx[0] of a

discrete-time system. Consider a matrix A whose Jordan form is

Ā = Q−1AQ =

[

λ1 1 0
0 λ1 0
0 0 λ2

]

Then we have that Āk =

[

λk

1
kλk−1

1
0

0 λk

1
0

0 0 λk

2

]

.

So the system response to initial conditions

x[k] = Akx(0) = QĀkQ−1x(0)

will be a linear combination of the terms λk
1 , kλk−1

1 and λk
2 .
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Discrete-Time Zero-Input Response

We now discuss the zero-input response x[k] = Akx[0] of a

discrete-time system. Consider a matrix A whose Jordan form is

Ā = Q−1AQ =

[

λ1 1 0
0 λ1 0
0 0 λ2

]

Then we have that Āk =

[

λk

1
kλk−1

1
0

0 λk

1
0

0 0 λk

2

]

.

So the system response to initial conditions

x[k] = Akx(0) = QĀkQ−1x(0)

will be a linear combination of the terms λk
1 , kλk−1

1 and λk
2 .

If all eigenvalues of A are strictly within the unit circle, the system

response to initial conditions will decay to zero as t → ∞. Other-

wise, the response may grow unbounded.

Lecture 11: State Space Equations – p. 40/41



The University of Newcastle

Summary

We have presented the general solution of the state

equation for continuous and discrete-time LTI systems.
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Summary

We have presented the general solution of the state

equation for continuous and discrete-time LTI systems.

In the continuous-time case, the solution is given by the

Parameter Variation Formula. In the discrete-time case, the

solution is a simple recursion based on the powers of A.
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Summary

We have presented the general solution of the state

equation for continuous and discrete-time LTI systems.

In the continuous-time case, the solution is given by the

Parameter Variation Formula. In the discrete-time case, the

solution is a simple recursion based on the powers of A.

The PVF requires the computation of the matrix exponential

eAt, and we have presented a method based on the

Laplace transform:

eAt = L−1
{
(sI − A)−1

}
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Summary

We have presented the general solution of the state

equation for continuous and discrete-time LTI systems.

In the continuous-time case, the solution is given by the

Parameter Variation Formula. In the discrete-time case, the

solution is a simple recursion based on the powers of A.

The PVF requires the computation of the matrix exponential

eAt, and we have presented a method based on the

Laplace transform:

eAt = L−1
{
(sI − A)−1

}

We have seen two applications of the PVF to

the analysis of the zero-input response of the system

the discretisation of a continuous-time LTI systems
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Summary

We have presented the general solution of the state

equation for continuous and discrete-time LTI systems.

In the continuous-time case, the solution is given by the

Parameter Variation Formula. In the discrete-time case, the

solution is a simple recursion based on the powers of A.

The PVF requires the computation of the matrix exponential

eAt, and we have presented a method based on the

Laplace transform:

eAt = L−1
{
(sI − A)−1

}

We have seen two applications of the PVF to

the analysis of the zero-input response of the system

the discretisation of a continuous-time LTI systems
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