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Canonical Decompositions

The Canonical Decompositions of state equations will establish
the relationship between Conftrollability, Observability , and a
tfransfer matrix and its minimal realisations.

Consider the state equation

x = Ax + Bu A € R"™" B € R"*P,

where (SE)
y = Cx + Du C € RPX™ D g RIXP,

Let x = Px, where P is nonsingular, P € R**™, Then we know that
the state equation

x = AX + Bu A =PAP ' B = PB,
C =

- where : )
y = Cx + Du CP ',D=D,

is algebraically equivalent to (SE).

\@ The University of Newcastle Lecture 15: Observability - p.3/14



Canonical Decompositions

Theorem (Controllable/Uncontrollable Decomposition). Consider the
n-dimensional state equation (SE) and suppose that

rankezran[B AB ... A“—1B}=n1<n

(i.,e., the system is not controllable). Let the n x n matrix of change of
coordinates P be defined as

P_1=[q1 dz -+ G, .- qn}

where the first n; columns are any ny independent columns in €, and
the remaining are arbitrarily chosen so that P is nonsingular. Then the
equivalence transformation x = Px transforms (SE) fo

Xe
Xe
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Canonical Decompositions

Controllable

The states in the new coordinates are u y
decomposed into o— ¢ —°
Xe : My controllable states N
c
Xz : M —ny uncontrollable states

Uncontrollable
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Canonical Decompositions

Controllable

The states in the new coordinates are u y

decomposed into o— ¢ —°
Xe : My controllable states N

C

Xz : M —ny uncontrollable states

Uncontrollable
The reduced order state equation of the controllable states
;Ce = Ae)-Ce —+ ]-3@11
Y= Ce)-c + Du
is confrollable and has the same transfer function as the original state
equation (SE).

The MATLAB function ctrbf transforms a state equation into its conftrol-
lable/unconftrollable canonical form.

The University of Newcastle Lecture 15: Observability - p.5/14



Canonical Decompositions

Theorem (Observable/Unobservable Decomposition). Consider the
n-dimensional state equation (SE) and suppose that

C
rank O =rank | €A | =n,<n (.e., the system is not observable).

Let the n x n maftrix of change of coordinates P be defined as

P1
P2
P = pnz
Pn

where the first n, columns are any n, independent columns in O, and
the remaining are arbitrarily chosen so that P is nonsingular. Then the
equivalence transformation x = Px transforms (SE) to

;cc) 72(‘) B(‘)
- - _I_ u

y-|Co 0|%x+Du
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Canonical Decompositions

The states in the new coordinates are
decomposed info

~

-~ O

Unobservable

X9 : Mz observable states u Y
O =0

©)
[

Xy : N — m2 unobservable states

Observable
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Canonical Decompositions

The states in the new coordinates are N
decomposed into 0 ©

Unobservable

X0 : M2 observable states u Y
O =0

@)
[

X : TN — nz unobservable stafes
Observable

The reduced order state equation of the observable states
;Cc) = Ac))-co -+ Bou
Y = Cc))_( + Du

Is observable and has the same transfer function as the original state

equation (SE). ]

The MATLAB function obsvf fransforms a state equation info its observ-
able/unobservable canonical form.
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Kalman Decomposition

The Kalman decomposition combines the
Conftrollable/Uncontrollable and Observable/Unobservable
decompositions.

Every state-space equation can be
cO tfransformed, by equivalence fransfor-

mation, into a canonical form that splits
y the states info

cO jﬁ—’o » Controllable and observable states
CO

coO

Unobservable

Oh =

Y

Uncontrollable
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Kalman Decomposition

The Kalman decomposition combines the
Conftrollable/Uncontrollable and Observable/Unobservable

decompositions.

N Every state-space equation can be
cO fransformed, by equivalence transfor-
Unobservable mation, into a canonical form that splits

y the states into

cCO —0
» Conftrollable and observable states
» Conftrollable but unobservable

CO states

O =

Y

coO

Uncontrollable
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Kalman Decomposition

The Kalman decomposition combines the
Conftrollable/Uncontrollable and Observable/Unobservable

decompositions.

N Every state-space equation can be
cO fransformed, by equivalence transfor-
Unobservable mation, into a canonical form that splits

y the states into

cCO —0
» Conftrollable and observable states
» Conftrollable but unobservable

CO states

O =

Y

» Unconftrollable but observable
states

coO

Uncontrollable

@ The University of Newcastle Lecture 15: Observability - p.8/14



Kalman Decomposition

The Kalman decomposition combines the
Conftrollable/Uncontrollable and Observable/Unobservable
decompositions.

Every state-space equation can be
fransformed, by equivalence transfor-
Unobservable mation, into a canonical form that splits
y the states info

cCO —0
» Conftrollable and observable states
» Conftrollable but unobservable

CO states

cCO

o g

Y

» Unconftrollable but observable
states

coO

» Uncontrollable and unobservable
states

Uncontrollable
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Kalman Decomposition

The Kalman decomposition brings the system fto the form

Xeo Aco 0 Az O Xeo Beo

Xed _ A1 Agp A2z Az |Xep n Beo u

Xeo 0 0 Azo 0 | |Xge 0

Xep] L O 0 Ass Ags] [Xep) | O
\W—/

X

y=|Ceo 0 Cgy O0|%+Du
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Kalman Decomposition

The Kalman decomposition brings the system fto the form

Xeo
Xeo

Xeo

Aco

| %GO

Az
0
0

0 Az 0 | [xeo
Ae(‘) Az Az 7-‘86
0 Agy O Xeo
0  Asz Ags] [Xes.
\W_/

X

Y = Ceo 0 Cé(‘) O}Q—FDU

o
)
©

well
)

o O

)

A minimal realisation of the system is obtained by using only the
controllable and observable states from the Kalman

decomposition.

@ The University of Newcastle

Xeo = AecoXeo + Beou

1:} = Cec)?-(—F Du
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Kalman Decomyposifion

Example. Consider the system in Modal Canonical Form

From the example seen in the Tutorial, Confrollability and
Observability in Modal Form equations, we see that

» the first A7 is confrollable and observable
» A2 is not controllable, although olbbservable
> Az is controllable and observable
Thus a minimal realisafion of this system is given by
k=92 %+ 1] ] 2

with transfer function G(s) = -+
y=[11]% S—A  S—A3
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Canonical Decompositions

Example (Controllable/Uncontrollable decomposition).
Consider the third order system

— e —

: 110 01
- ote]x+[ro]u
y=[111]%x
Compute the rank of the controllability matrix,
rank € =rank[ s A A28 ] = rank {?H 5%5} = 2< 3,
OT1T1121

thus the system is not conftrollable. Take the change of
coordinates formed by the first fwo columns of € and an
arbifrary third one independent of the first fwo,

-0 ey
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Canonical Decompositions

Example (continuation). By doing X = Px we obtain the equivalent

eqguations
1 O 0
1 0
X=14 0 x"‘[....]..]u
0
L 0 O 1 4

y=11 2 : 1] x
and the reduced conftrollable system

2=

y=1[12]x

—=O

Ix+[59%]u

which has the same transfer maftrix than the original system

G(s) = s+1 2 } .

s2—-2s+1 s—1
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Discrete-Time Systems
For controllability and observability of a discrete-fime equation

x|k + 1] = Ax[k] + Bu[k]
ylk] = Cx[k] + Du[k]

we can use the same Controllability and Observability matrices
rank tests that we have for confinuous-time systemes,

rank G =rank[s AB ..- A 'Bl=n & Controllability

C
cA ]Zn & Observability
CA™ !

rank © = rank

Canonical decompositions are analogous.
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summary

» When a system is not controllable or not observable, there
might be a part of the system that still is controllable and
observable.
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summary

» When a system is not controllable or not observable, there
might be a part of the system that still is controllable and
observable.

» The confrollability and observability matrices can be used to
split (lby a change of coordinates) a state equation into its
controllable/uncontrollable parts and
observable/unobservable parts.

\ The University of Newcastle Lecture 15: Observability - p.14/14



summary

» When a system is not controllable or not observable, there
might be a part of the system that still is controllable and
observable.

» The confrollability and observability matrices can be used to
split (lby a change of coordinates) a state equation into its
controllable/uncontrollable parts and
observable/unobservable parts.

» The controllable and observable part of a state equation
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summary

» When a system is not controllable or not observable, there
might be a part of the system that still is controllable and
observable.

» The confrollability and observability matrices can be used to
split (lby a change of coordinates) a state equation into its
controllable/uncontrollable parts and
observable/unobservable parts.

» The controllable and observable part of a state equation
yields minimal realisafion .

Thus, we conclude that for a state equation
minimal realisation & conftrollable and observable
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